diff options
Diffstat (limited to 'zto/node/Switch.cpp')
| -rw-r--r-- | zto/node/Switch.cpp | 873 |
1 files changed, 873 insertions, 0 deletions
diff --git a/zto/node/Switch.cpp b/zto/node/Switch.cpp new file mode 100644 index 0000000..85103aa --- /dev/null +++ b/zto/node/Switch.cpp @@ -0,0 +1,873 @@ +/* + * ZeroTier One - Network Virtualization Everywhere + * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <stdio.h> +#include <stdlib.h> + +#include <algorithm> +#include <utility> +#include <stdexcept> + +#include "../version.h" +#include "../include/ZeroTierOne.h" + +#include "Constants.hpp" +#include "RuntimeEnvironment.hpp" +#include "Switch.hpp" +#include "Node.hpp" +#include "InetAddress.hpp" +#include "Topology.hpp" +#include "Peer.hpp" +#include "SelfAwareness.hpp" +#include "Packet.hpp" +#include "Cluster.hpp" + +namespace ZeroTier { + +#ifdef ZT_TRACE +static const char *etherTypeName(const unsigned int etherType) +{ + switch(etherType) { + case ZT_ETHERTYPE_IPV4: return "IPV4"; + case ZT_ETHERTYPE_ARP: return "ARP"; + case ZT_ETHERTYPE_RARP: return "RARP"; + case ZT_ETHERTYPE_ATALK: return "ATALK"; + case ZT_ETHERTYPE_AARP: return "AARP"; + case ZT_ETHERTYPE_IPX_A: return "IPX_A"; + case ZT_ETHERTYPE_IPX_B: return "IPX_B"; + case ZT_ETHERTYPE_IPV6: return "IPV6"; + } + return "UNKNOWN"; +} +#endif // ZT_TRACE + +Switch::Switch(const RuntimeEnvironment *renv) : + RR(renv), + _lastBeaconResponse(0), + _outstandingWhoisRequests(32), + _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine +{ +} + +void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len) +{ + try { + const uint64_t now = RR->node->now(); + + SharedPtr<Path> path(RR->topology->getPath(localAddr,fromAddr)); + path->received(now); + + if (len == 13) { + /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast + * announcements on the LAN to solve the 'same network problem.' We + * no longer send these, but we'll listen for them for a while to + * locate peers with versions <1.0.4. */ + + const Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5); + if (beaconAddr == RR->identity.address()) + return; + if (!RR->node->shouldUsePathForZeroTierTraffic(beaconAddr,localAddr,fromAddr)) + return; + const SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr)); + if (peer) { // we'll only respond to beacons from known peers + if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses + _lastBeaconResponse = now; + Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP); + outp.armor(peer->key(),true,path->nextOutgoingCounter()); + path->send(RR,outp.data(),outp.size(),now); + } + } + + } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below! + if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) { + // Handle fragment ---------------------------------------------------- + + Packet::Fragment fragment(data,len); + const Address destination(fragment.destination()); + + if (destination != RR->identity.address()) { +#ifdef ZT_ENABLE_CLUSTER + const bool isClusterFrontplane = ((RR->cluster)&&(RR->cluster->isClusterPeerFrontplane(fromAddr))); +#else + const bool isClusterFrontplane = false; +#endif + + if ( (!RR->topology->amRoot()) && (!path->trustEstablished(now)) && (!isClusterFrontplane) ) + return; + + if (fragment.hops() < ZT_RELAY_MAX_HOPS) { + fragment.incrementHops(); + + // Note: we don't bother initiating NAT-t for fragments, since heads will set that off. + // It wouldn't hurt anything, just redundant and unnecessary. + SharedPtr<Peer> relayTo = RR->topology->getPeer(destination); + if ((!relayTo)||(!relayTo->sendDirect(fragment.data(),fragment.size(),now,false))) { +#ifdef ZT_ENABLE_CLUSTER + if ((RR->cluster)&&(!isClusterFrontplane)) { + RR->cluster->relayViaCluster(Address(),destination,fragment.data(),fragment.size(),false); + return; + } +#endif + + // Don't know peer or no direct path -- so relay via someone upstream + relayTo = RR->topology->getUpstreamPeer(); + if (relayTo) + relayTo->sendDirect(fragment.data(),fragment.size(),now,true); + } + } else { + TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str()); + } + } else { + // Fragment looks like ours + const uint64_t fragmentPacketId = fragment.packetId(); + const unsigned int fragmentNumber = fragment.fragmentNumber(); + const unsigned int totalFragments = fragment.totalFragments(); + + if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) { + // Fragment appears basically sane. Its fragment number must be + // 1 or more, since a Packet with fragmented bit set is fragment 0. + // Total fragments must be more than 1, otherwise why are we + // seeing a Packet::Fragment? + + Mutex::Lock _l(_rxQueue_m); + RXQueueEntry *const rq = _findRXQueueEntry(now,fragmentPacketId); + + if ((!rq->timestamp)||(rq->packetId != fragmentPacketId)) { + // No packet found, so we received a fragment without its head. + //TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str()); + + rq->timestamp = now; + rq->packetId = fragmentPacketId; + rq->frags[fragmentNumber - 1] = fragment; + rq->totalFragments = totalFragments; // total fragment count is known + rq->haveFragments = 1 << fragmentNumber; // we have only this fragment + rq->complete = false; + } else if (!(rq->haveFragments & (1 << fragmentNumber))) { + // We have other fragments and maybe the head, so add this one and check + //TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str()); + + rq->frags[fragmentNumber - 1] = fragment; + rq->totalFragments = totalFragments; + + if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) { + // We have all fragments -- assemble and process full Packet + //TRACE("packet %.16llx is complete, assembling and processing...",fragmentPacketId); + + for(unsigned int f=1;f<totalFragments;++f) + rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength()); + + if (rq->frag0.tryDecode(RR)) { + rq->timestamp = 0; // packet decoded, free entry + } else { + rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something + } + } + } // else this is a duplicate fragment, ignore + } + } + + // -------------------------------------------------------------------- + } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important! + // Handle packet head ------------------------------------------------- + + const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH); + const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH); + + //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size()); + +#ifdef ZT_ENABLE_CLUSTER + if ( (source == RR->identity.address()) && ((!RR->cluster)||(!RR->cluster->isClusterPeerFrontplane(fromAddr))) ) + return; +#else + if (source == RR->identity.address()) + return; +#endif + + if (destination != RR->identity.address()) { + if ( (!RR->topology->amRoot()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) ) + return; + + Packet packet(data,len); + + if (packet.hops() < ZT_RELAY_MAX_HOPS) { +#ifdef ZT_ENABLE_CLUSTER + if (source != RR->identity.address()) // don't increment hops for cluster frontplane relays + packet.incrementHops(); +#else + packet.incrementHops(); +#endif + + SharedPtr<Peer> relayTo = RR->topology->getPeer(destination); + if ((relayTo)&&(relayTo->sendDirect(packet.data(),packet.size(),now,false))) { + if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) { // don't send RENDEZVOUS for cluster frontplane relays + const InetAddress *hintToSource = (InetAddress *)0; + const InetAddress *hintToDest = (InetAddress *)0; + + InetAddress destV4,destV6; + InetAddress sourceV4,sourceV6; + relayTo->getRendezvousAddresses(now,destV4,destV6); + + const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(source)); + if (sourcePeer) { + sourcePeer->getRendezvousAddresses(now,sourceV4,sourceV6); + if ((destV6)&&(sourceV6)) { + hintToSource = &destV6; + hintToDest = &sourceV6; + } else if ((destV4)&&(sourceV4)) { + hintToSource = &destV4; + hintToDest = &sourceV4; + } + + if ((hintToSource)&&(hintToDest)) { + unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for obscure NAT-t reasons + const unsigned int completed = alt + 2; + while (alt != completed) { + if ((alt & 1) == 0) { + Packet outp(source,RR->identity.address(),Packet::VERB_RENDEZVOUS); + outp.append((uint8_t)0); + destination.appendTo(outp); + outp.append((uint16_t)hintToSource->port()); + if (hintToSource->ss_family == AF_INET6) { + outp.append((uint8_t)16); + outp.append(hintToSource->rawIpData(),16); + } else { + outp.append((uint8_t)4); + outp.append(hintToSource->rawIpData(),4); + } + send(outp,true); + } else { + Packet outp(destination,RR->identity.address(),Packet::VERB_RENDEZVOUS); + outp.append((uint8_t)0); + source.appendTo(outp); + outp.append((uint16_t)hintToDest->port()); + if (hintToDest->ss_family == AF_INET6) { + outp.append((uint8_t)16); + outp.append(hintToDest->rawIpData(),16); + } else { + outp.append((uint8_t)4); + outp.append(hintToDest->rawIpData(),4); + } + send(outp,true); + } + ++alt; + } + } + } + } + } else { +#ifdef ZT_ENABLE_CLUSTER + if ((RR->cluster)&&(source != RR->identity.address())) { + RR->cluster->relayViaCluster(source,destination,packet.data(),packet.size(),_shouldUnite(now,source,destination)); + return; + } +#endif + relayTo = RR->topology->getUpstreamPeer(&source,1,true); + if (relayTo) + relayTo->sendDirect(packet.data(),packet.size(),now,true); + } + } else { + TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str()); + } + } else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) { + // Packet is the head of a fragmented packet series + + const uint64_t packetId = ( + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) | + ((uint64_t)reinterpret_cast<const uint8_t *>(data)[7]) + ); + + Mutex::Lock _l(_rxQueue_m); + RXQueueEntry *const rq = _findRXQueueEntry(now,packetId); + + if ((!rq->timestamp)||(rq->packetId != packetId)) { + // If we have no other fragments yet, create an entry and save the head + //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str()); + + rq->timestamp = now; + rq->packetId = packetId; + rq->frag0.init(data,len,path,now); + rq->totalFragments = 0; + rq->haveFragments = 1; + rq->complete = false; + } else if (!(rq->haveFragments & 1)) { + // If we have other fragments but no head, see if we are complete with the head + + if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) { + // We have all fragments -- assemble and process full Packet + //TRACE("packet %.16llx is complete, assembling and processing...",pid); + + rq->frag0.init(data,len,path,now); + for(unsigned int f=1;f<rq->totalFragments;++f) + rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength()); + + if (rq->frag0.tryDecode(RR)) { + rq->timestamp = 0; // packet decoded, free entry + } else { + rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something + } + } else { + // Still waiting on more fragments, but keep the head + rq->frag0.init(data,len,path,now); + } + } // else this is a duplicate head, ignore + } else { + // Packet is unfragmented, so just process it + IncomingPacket packet(data,len,path,now); + if (!packet.tryDecode(RR)) { + Mutex::Lock _l(_rxQueue_m); + RXQueueEntry *rq = &(_rxQueue[ZT_RX_QUEUE_SIZE - 1]); + unsigned long i = ZT_RX_QUEUE_SIZE - 1; + while ((i)&&(rq->timestamp)) { + RXQueueEntry *tmp = &(_rxQueue[--i]); + if (tmp->timestamp < rq->timestamp) + rq = tmp; + } + rq->timestamp = now; + rq->packetId = packet.packetId(); + rq->frag0 = packet; + rq->totalFragments = 1; + rq->haveFragments = 1; + rq->complete = true; + } + } + + // -------------------------------------------------------------------- + } + } + } catch (std::exception &ex) { + TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what()); + } catch ( ... ) { + TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str()); + } +} + +void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) +{ + if (!network->hasConfig()) + return; + + // Check if this packet is from someone other than the tap -- i.e. bridged in + bool fromBridged; + if ((fromBridged = (from != network->mac()))) { + if (!network->config().permitsBridging(RR->identity.address())) { + TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType)); + return; + } + } + + if (to.isMulticast()) { + MulticastGroup multicastGroup(to,0); + + if (to.isBroadcast()) { + if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) { + /* IPv4 ARP is one of the few special cases that we impose upon what is + * otherwise a straightforward Ethernet switch emulation. Vanilla ARP + * is dumb old broadcast and simply doesn't scale. ZeroTier multicast + * groups have an additional field called ADI (additional distinguishing + * information) which was added specifically for ARP though it could + * be used for other things too. We then take ARP broadcasts and turn + * them into multicasts by stuffing the IP address being queried into + * the 32-bit ADI field. In practice this uses our multicast pub/sub + * system to implement a kind of extended/distributed ARP table. */ + multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0)); + } else if (!network->config().enableBroadcast()) { + // Don't transmit broadcasts if this network doesn't want them + TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id()); + return; + } + } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) { + // IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled + if ((network->config().ndpEmulation())&&(reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation + Address v6EmbeddedAddress; + const uint8_t *const pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8; + const uint8_t *my6 = (const uint8_t *)0; + + // ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host) + + // ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host) + // (XX - lower 32 bits of network ID XORed with higher 32 bits) + + // For these to work, we must have a ZT-managed address assigned in one of the + // above formats, and the query must match its prefix. + for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) { + const InetAddress *const sip = &(network->config().staticIps[sipk]); + if (sip->ss_family == AF_INET6) { + my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr); + const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port); + if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ??? + unsigned int ptr = 0; + while (ptr != 11) { + if (pkt6[ptr] != my6[ptr]) + break; + ++ptr; + } + if (ptr == 11) { // prefix match! + v6EmbeddedAddress.setTo(pkt6 + ptr,5); + break; + } + } else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ??? + const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff); + if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) { + unsigned int ptr = 0; + while (ptr != 5) { + if (pkt6[ptr] != my6[ptr]) + break; + ++ptr; + } + if (ptr == 5) { // prefix match! + v6EmbeddedAddress.setTo(pkt6 + ptr,5); + break; + } + } + } + } + } + + if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) { + const MAC peerMac(v6EmbeddedAddress,network->id()); + TRACE("IPv6 NDP emulation: %.16llx: forging response for %s/%s",network->id(),v6EmbeddedAddress.toString().c_str(),peerMac.toString().c_str()); + + uint8_t adv[72]; + adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00; + adv[4] = 0x00; adv[5] = 0x20; + adv[6] = 0x3a; adv[7] = 0xff; + for(int i=0;i<16;++i) adv[8 + i] = pkt6[i]; + for(int i=0;i<16;++i) adv[24 + i] = my6[i]; + adv[40] = 0x88; adv[41] = 0x00; + adv[42] = 0x00; adv[43] = 0x00; // future home of checksum + adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00; + for(int i=0;i<16;++i) adv[48 + i] = pkt6[i]; + adv[64] = 0x02; adv[65] = 0x01; + adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5]; + + uint16_t pseudo_[36]; + uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_); + for(int i=0;i<32;++i) pseudo[i] = adv[8 + i]; + pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20; + pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a; + for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i]; + uint32_t checksum = 0; + for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]); + while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16); + checksum = ~checksum; + adv[42] = (checksum >> 8) & 0xff; + adv[43] = checksum & 0xff; + + RR->node->putFrame(network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72); + return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query. + } // else no NDP emulation + } // else no NDP emulation + } + + // Check this after NDP emulation, since that has to be allowed in exactly this case + if (network->config().multicastLimit == 0) { + TRACE("%.16llx: dropped multicast: not allowed on network",network->id()); + return; + } + + /* Learn multicast groups for bridged-in hosts. + * Note that some OSes, most notably Linux, do this for you by learning + * multicast addresses on bridge interfaces and subscribing each slave. + * But in that case this does no harm, as the sets are just merged. */ + if (fromBridged) + network->learnBridgedMulticastGroup(multicastGroup,RR->node->now()); + + //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),multicastGroup.toString().c_str(),etherTypeName(etherType),len); + + // First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates. + if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) { + TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType)); + return; + } + + RR->mc->send( + network->config().multicastLimit, + RR->node->now(), + network->id(), + network->config().disableCompression(), + network->config().activeBridges(), + multicastGroup, + (fromBridged) ? from : MAC(), + etherType, + data, + len); + } else if (to == network->mac()) { + // Destination is this node, so just reinject it + RR->node->putFrame(network->id(),network->userPtr(),from,to,etherType,vlanId,data,len); + } else if (to[0] == MAC::firstOctetForNetwork(network->id())) { + // Destination is another ZeroTier peer on the same network + + Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this + SharedPtr<Peer> toPeer(RR->topology->getPeer(toZT)); + + if (!network->filterOutgoingPacket(false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId)) { + TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType)); + return; + } + + if (fromBridged) { + Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME); + outp.append(network->id()); + outp.append((unsigned char)0x00); + to.appendTo(outp); + from.appendTo(outp); + outp.append((uint16_t)etherType); + outp.append(data,len); + if (!network->config().disableCompression()) + outp.compress(); + send(outp,true); + } else { + Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME); + outp.append(network->id()); + outp.append((uint16_t)etherType); + outp.append(data,len); + if (!network->config().disableCompression()) + outp.compress(); + send(outp,true); + } + + //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom); + } else { + // Destination is bridged behind a remote peer + + // We filter with a NULL destination ZeroTier address first. Filtrations + // for each ZT destination are also done below. This is the same rationale + // and design as for multicast. + if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) { + TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType)); + return; + } + + Address bridges[ZT_MAX_BRIDGE_SPAM]; + unsigned int numBridges = 0; + + /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */ + bridges[0] = network->findBridgeTo(to); + std::vector<Address> activeBridges(network->config().activeBridges()); + if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) { + /* We have a known bridge route for this MAC, send it there. */ + ++numBridges; + } else if (!activeBridges.empty()) { + /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active + * bridges. If someone responds, we'll learn the route. */ + std::vector<Address>::const_iterator ab(activeBridges.begin()); + if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) { + // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all + while (ab != activeBridges.end()) { + bridges[numBridges++] = *ab; + ++ab; + } + } else { + // Otherwise pick a random set of them + while (numBridges < ZT_MAX_BRIDGE_SPAM) { + if (ab == activeBridges.end()) + ab = activeBridges.begin(); + if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) { + bridges[numBridges++] = *ab; + ++ab; + } else ++ab; + } + } + } + + for(unsigned int b=0;b<numBridges;++b) { + if (network->filterOutgoingPacket(true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId)) { + Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME); + outp.append(network->id()); + outp.append((uint8_t)0x00); + to.appendTo(outp); + from.appendTo(outp); + outp.append((uint16_t)etherType); + outp.append(data,len); + if (!network->config().disableCompression()) + outp.compress(); + send(outp,true); + } else { + TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType)); + } + } + } +} + +void Switch::send(Packet &packet,bool encrypt) +{ + if (packet.destination() == RR->identity.address()) { + TRACE("BUG: caught attempt to send() to self, ignored"); + return; + } + + if (!_trySend(packet,encrypt)) { + Mutex::Lock _l(_txQueue_m); + _txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt)); + } +} + +void Switch::requestWhois(const Address &addr) +{ + bool inserted = false; + { + Mutex::Lock _l(_outstandingWhoisRequests_m); + WhoisRequest &r = _outstandingWhoisRequests[addr]; + if (r.lastSent) { + r.retries = 0; // reset retry count if entry already existed, but keep waiting and retry again after normal timeout + } else { + r.lastSent = RR->node->now(); + inserted = true; + } + } + if (inserted) + _sendWhoisRequest(addr,(const Address *)0,0); +} + +void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer) +{ + { // cancel pending WHOIS since we now know this peer + Mutex::Lock _l(_outstandingWhoisRequests_m); + _outstandingWhoisRequests.erase(peer->address()); + } + + { // finish processing any packets waiting on peer's public key / identity + Mutex::Lock _l(_rxQueue_m); + unsigned long i = ZT_RX_QUEUE_SIZE; + while (i) { + RXQueueEntry *rq = &(_rxQueue[--i]); + if ((rq->timestamp)&&(rq->complete)) { + if (rq->frag0.tryDecode(RR)) + rq->timestamp = 0; + } + } + } + + { // finish sending any packets waiting on peer's public key / identity + Mutex::Lock _l(_txQueue_m); + for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { + if (txi->dest == peer->address()) { + if (_trySend(txi->packet,txi->encrypt)) + _txQueue.erase(txi++); + else ++txi; + } else ++txi; + } + } +} + +unsigned long Switch::doTimerTasks(uint64_t now) +{ + unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum + + { // Retry outstanding WHOIS requests + Mutex::Lock _l(_outstandingWhoisRequests_m); + Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests); + Address *a = (Address *)0; + WhoisRequest *r = (WhoisRequest *)0; + while (i.next(a,r)) { + const unsigned long since = (unsigned long)(now - r->lastSent); + if (since >= ZT_WHOIS_RETRY_DELAY) { + if (r->retries >= ZT_MAX_WHOIS_RETRIES) { + TRACE("WHOIS %s timed out",a->toString().c_str()); + _outstandingWhoisRequests.erase(*a); + } else { + r->lastSent = now; + r->peersConsulted[r->retries] = _sendWhoisRequest(*a,r->peersConsulted,(r->retries > 1) ? r->retries : 0); + TRACE("WHOIS %s (retry %u)",a->toString().c_str(),r->retries); + ++r->retries; + nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY); + } + } else { + nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since); + } + } + } + + { // Time out TX queue packets that never got WHOIS lookups or other info. + Mutex::Lock _l(_txQueue_m); + for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { + if (_trySend(txi->packet,txi->encrypt)) + _txQueue.erase(txi++); + else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) { + TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str()); + _txQueue.erase(txi++); + } else ++txi; + } + } + + { // Remove really old last unite attempt entries to keep table size controlled + Mutex::Lock _l(_lastUniteAttempt_m); + Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt); + _LastUniteKey *k = (_LastUniteKey *)0; + uint64_t *v = (uint64_t *)0; + while (i.next(k,v)) { + if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8)) + _lastUniteAttempt.erase(*k); + } + } + + return nextDelay; +} + +bool Switch::_shouldUnite(const uint64_t now,const Address &source,const Address &destination) +{ + Mutex::Lock _l(_lastUniteAttempt_m); + uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)]; + if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) { + ts = now; + return true; + } + return false; +} + +Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted) +{ + SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer(peersAlreadyConsulted,numPeersAlreadyConsulted,false)); + if (upstream) { + Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS); + addr.appendTo(outp); + RR->node->expectReplyTo(outp.packetId()); + send(outp,true); + } + return Address(); +} + +bool Switch::_trySend(Packet &packet,bool encrypt) +{ + SharedPtr<Path> viaPath; + const uint64_t now = RR->node->now(); + const Address destination(packet.destination()); + +#ifdef ZT_ENABLE_CLUSTER + uint64_t clusterMostRecentTs = 0; + int clusterMostRecentMemberId = -1; + uint8_t clusterPeerSecret[ZT_PEER_SECRET_KEY_LENGTH]; + if (RR->cluster) + clusterMostRecentMemberId = RR->cluster->checkSendViaCluster(destination,clusterMostRecentTs,clusterPeerSecret); +#endif + + const SharedPtr<Peer> peer(RR->topology->getPeer(destination)); + if (peer) { + /* First get the best path, and if it's dead (and this is not a root) + * we attempt to re-activate that path but this packet will flow + * upstream. If the path comes back alive, it will be used in the future. + * For roots we don't do the alive check since roots are not required + * to send heartbeats "down" and because we have to at least try to + * go somewhere. */ + + viaPath = peer->getBestPath(now,false); + if ( (viaPath) && (!viaPath->alive(now)) && (!RR->topology->isUpstream(peer->identity())) ) { +#ifdef ZT_ENABLE_CLUSTER + if ((clusterMostRecentMemberId < 0)||(viaPath->lastIn() > clusterMostRecentTs)) { +#endif + if ((now - viaPath->lastOut()) > std::max((now - viaPath->lastIn()) * 4,(uint64_t)ZT_PATH_MIN_REACTIVATE_INTERVAL)) { + peer->attemptToContactAt(viaPath->localAddress(),viaPath->address(),now,false,viaPath->nextOutgoingCounter()); + viaPath->sent(now); + } +#ifdef ZT_ENABLE_CLUSTER + } +#endif + viaPath.zero(); + } + +#ifdef ZT_ENABLE_CLUSTER + if (clusterMostRecentMemberId >= 0) { + if ((viaPath)&&(viaPath->lastIn() < clusterMostRecentTs)) + viaPath.zero(); + } else if (!viaPath) { +#else + if (!viaPath) { +#endif + peer->tryMemorizedPath(now); // periodically attempt memorized or statically defined paths, if any are known + const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer()); + if ( (!relay) || (!(viaPath = relay->getBestPath(now,false))) ) { + if (!(viaPath = peer->getBestPath(now,true))) + return false; + } +#ifdef ZT_ENABLE_CLUSTER + } +#else + } +#endif + } else { +#ifdef ZT_ENABLE_CLUSTER + if (clusterMostRecentMemberId < 0) { +#else + requestWhois(destination); + return false; // if we are not in cluster mode, there is no way we can send without knowing the peer directly +#endif +#ifdef ZT_ENABLE_CLUSTER + } +#endif + } + + unsigned int chunkSize = std::min(packet.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU); + packet.setFragmented(chunkSize < packet.size()); + +#ifdef ZT_ENABLE_CLUSTER + const uint64_t trustedPathId = (viaPath) ? RR->topology->getOutboundPathTrust(viaPath->address()) : 0; + if (trustedPathId) { + packet.setTrusted(trustedPathId); + } else { + packet.armor((clusterMostRecentMemberId >= 0) ? clusterPeerSecret : peer->key(),encrypt,(viaPath) ? viaPath->nextOutgoingCounter() : 0); + } +#else + const uint64_t trustedPathId = RR->topology->getOutboundPathTrust(viaPath->address()); + if (trustedPathId) { + packet.setTrusted(trustedPathId); + } else { + packet.armor(peer->key(),encrypt,viaPath->nextOutgoingCounter()); + } +#endif + +#ifdef ZT_ENABLE_CLUSTER + if ( ((viaPath)&&(viaPath->send(RR,packet.data(),chunkSize,now))) || ((clusterMostRecentMemberId >= 0)&&(RR->cluster->sendViaCluster(clusterMostRecentMemberId,destination,packet.data(),chunkSize))) ) { +#else + if (viaPath->send(RR,packet.data(),chunkSize,now)) { +#endif + if (chunkSize < packet.size()) { + // Too big for one packet, fragment the rest + unsigned int fragStart = chunkSize; + unsigned int remaining = packet.size() - chunkSize; + unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)); + if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining) + ++fragsRemaining; + const unsigned int totalFragments = fragsRemaining + 1; + + for(unsigned int fno=1;fno<totalFragments;++fno) { + chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)); + Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments); +#ifdef ZT_ENABLE_CLUSTER + if (viaPath) + viaPath->send(RR,frag.data(),frag.size(),now); + else if (clusterMostRecentMemberId >= 0) + RR->cluster->sendViaCluster(clusterMostRecentMemberId,destination,frag.data(),frag.size()); +#else + viaPath->send(RR,frag.data(),frag.size(),now); +#endif + fragStart += chunkSize; + remaining -= chunkSize; + } + } + } + + return true; +} + +} // namespace ZeroTier |
