summaryrefslogtreecommitdiff
path: root/zto/node/Switch.cpp
diff options
context:
space:
mode:
authorJoseph Henry <[email protected]>2017-03-14 13:21:54 -0700
committerJoseph Henry <[email protected]>2017-03-14 13:21:54 -0700
commit695b8ecc55a4b54aa47df181c1cdb674fd4b512c (patch)
tree8b7815a5c2f4094d72cff5552d73dc7340277e3c /zto/node/Switch.cpp
parente800e47a6333a0b4fe7df2a6093716cb2b44d308 (diff)
upgraded core to 1.2.00.8.0
Diffstat (limited to 'zto/node/Switch.cpp')
-rw-r--r--zto/node/Switch.cpp873
1 files changed, 873 insertions, 0 deletions
diff --git a/zto/node/Switch.cpp b/zto/node/Switch.cpp
new file mode 100644
index 0000000..85103aa
--- /dev/null
+++ b/zto/node/Switch.cpp
@@ -0,0 +1,873 @@
+/*
+ * ZeroTier One - Network Virtualization Everywhere
+ * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <http://www.gnu.org/licenses/>.
+ */
+
+#include <stdio.h>
+#include <stdlib.h>
+
+#include <algorithm>
+#include <utility>
+#include <stdexcept>
+
+#include "../version.h"
+#include "../include/ZeroTierOne.h"
+
+#include "Constants.hpp"
+#include "RuntimeEnvironment.hpp"
+#include "Switch.hpp"
+#include "Node.hpp"
+#include "InetAddress.hpp"
+#include "Topology.hpp"
+#include "Peer.hpp"
+#include "SelfAwareness.hpp"
+#include "Packet.hpp"
+#include "Cluster.hpp"
+
+namespace ZeroTier {
+
+#ifdef ZT_TRACE
+static const char *etherTypeName(const unsigned int etherType)
+{
+ switch(etherType) {
+ case ZT_ETHERTYPE_IPV4: return "IPV4";
+ case ZT_ETHERTYPE_ARP: return "ARP";
+ case ZT_ETHERTYPE_RARP: return "RARP";
+ case ZT_ETHERTYPE_ATALK: return "ATALK";
+ case ZT_ETHERTYPE_AARP: return "AARP";
+ case ZT_ETHERTYPE_IPX_A: return "IPX_A";
+ case ZT_ETHERTYPE_IPX_B: return "IPX_B";
+ case ZT_ETHERTYPE_IPV6: return "IPV6";
+ }
+ return "UNKNOWN";
+}
+#endif // ZT_TRACE
+
+Switch::Switch(const RuntimeEnvironment *renv) :
+ RR(renv),
+ _lastBeaconResponse(0),
+ _outstandingWhoisRequests(32),
+ _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine
+{
+}
+
+void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len)
+{
+ try {
+ const uint64_t now = RR->node->now();
+
+ SharedPtr<Path> path(RR->topology->getPath(localAddr,fromAddr));
+ path->received(now);
+
+ if (len == 13) {
+ /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast
+ * announcements on the LAN to solve the 'same network problem.' We
+ * no longer send these, but we'll listen for them for a while to
+ * locate peers with versions <1.0.4. */
+
+ const Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5);
+ if (beaconAddr == RR->identity.address())
+ return;
+ if (!RR->node->shouldUsePathForZeroTierTraffic(beaconAddr,localAddr,fromAddr))
+ return;
+ const SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr));
+ if (peer) { // we'll only respond to beacons from known peers
+ if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses
+ _lastBeaconResponse = now;
+ Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP);
+ outp.armor(peer->key(),true,path->nextOutgoingCounter());
+ path->send(RR,outp.data(),outp.size(),now);
+ }
+ }
+
+ } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // SECURITY: min length check is important since we do some C-style stuff below!
+ if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) {
+ // Handle fragment ----------------------------------------------------
+
+ Packet::Fragment fragment(data,len);
+ const Address destination(fragment.destination());
+
+ if (destination != RR->identity.address()) {
+#ifdef ZT_ENABLE_CLUSTER
+ const bool isClusterFrontplane = ((RR->cluster)&&(RR->cluster->isClusterPeerFrontplane(fromAddr)));
+#else
+ const bool isClusterFrontplane = false;
+#endif
+
+ if ( (!RR->topology->amRoot()) && (!path->trustEstablished(now)) && (!isClusterFrontplane) )
+ return;
+
+ if (fragment.hops() < ZT_RELAY_MAX_HOPS) {
+ fragment.incrementHops();
+
+ // Note: we don't bother initiating NAT-t for fragments, since heads will set that off.
+ // It wouldn't hurt anything, just redundant and unnecessary.
+ SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
+ if ((!relayTo)||(!relayTo->sendDirect(fragment.data(),fragment.size(),now,false))) {
+#ifdef ZT_ENABLE_CLUSTER
+ if ((RR->cluster)&&(!isClusterFrontplane)) {
+ RR->cluster->relayViaCluster(Address(),destination,fragment.data(),fragment.size(),false);
+ return;
+ }
+#endif
+
+ // Don't know peer or no direct path -- so relay via someone upstream
+ relayTo = RR->topology->getUpstreamPeer();
+ if (relayTo)
+ relayTo->sendDirect(fragment.data(),fragment.size(),now,true);
+ }
+ } else {
+ TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str());
+ }
+ } else {
+ // Fragment looks like ours
+ const uint64_t fragmentPacketId = fragment.packetId();
+ const unsigned int fragmentNumber = fragment.fragmentNumber();
+ const unsigned int totalFragments = fragment.totalFragments();
+
+ if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) {
+ // Fragment appears basically sane. Its fragment number must be
+ // 1 or more, since a Packet with fragmented bit set is fragment 0.
+ // Total fragments must be more than 1, otherwise why are we
+ // seeing a Packet::Fragment?
+
+ Mutex::Lock _l(_rxQueue_m);
+ RXQueueEntry *const rq = _findRXQueueEntry(now,fragmentPacketId);
+
+ if ((!rq->timestamp)||(rq->packetId != fragmentPacketId)) {
+ // No packet found, so we received a fragment without its head.
+ //TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str());
+
+ rq->timestamp = now;
+ rq->packetId = fragmentPacketId;
+ rq->frags[fragmentNumber - 1] = fragment;
+ rq->totalFragments = totalFragments; // total fragment count is known
+ rq->haveFragments = 1 << fragmentNumber; // we have only this fragment
+ rq->complete = false;
+ } else if (!(rq->haveFragments & (1 << fragmentNumber))) {
+ // We have other fragments and maybe the head, so add this one and check
+ //TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str());
+
+ rq->frags[fragmentNumber - 1] = fragment;
+ rq->totalFragments = totalFragments;
+
+ if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) {
+ // We have all fragments -- assemble and process full Packet
+ //TRACE("packet %.16llx is complete, assembling and processing...",fragmentPacketId);
+
+ for(unsigned int f=1;f<totalFragments;++f)
+ rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
+
+ if (rq->frag0.tryDecode(RR)) {
+ rq->timestamp = 0; // packet decoded, free entry
+ } else {
+ rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
+ }
+ }
+ } // else this is a duplicate fragment, ignore
+ }
+ }
+
+ // --------------------------------------------------------------------
+ } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important!
+ // Handle packet head -------------------------------------------------
+
+ const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH);
+ const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH);
+
+ //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size());
+
+#ifdef ZT_ENABLE_CLUSTER
+ if ( (source == RR->identity.address()) && ((!RR->cluster)||(!RR->cluster->isClusterPeerFrontplane(fromAddr))) )
+ return;
+#else
+ if (source == RR->identity.address())
+ return;
+#endif
+
+ if (destination != RR->identity.address()) {
+ if ( (!RR->topology->amRoot()) && (!path->trustEstablished(now)) && (source != RR->identity.address()) )
+ return;
+
+ Packet packet(data,len);
+
+ if (packet.hops() < ZT_RELAY_MAX_HOPS) {
+#ifdef ZT_ENABLE_CLUSTER
+ if (source != RR->identity.address()) // don't increment hops for cluster frontplane relays
+ packet.incrementHops();
+#else
+ packet.incrementHops();
+#endif
+
+ SharedPtr<Peer> relayTo = RR->topology->getPeer(destination);
+ if ((relayTo)&&(relayTo->sendDirect(packet.data(),packet.size(),now,false))) {
+ if ((source != RR->identity.address())&&(_shouldUnite(now,source,destination))) { // don't send RENDEZVOUS for cluster frontplane relays
+ const InetAddress *hintToSource = (InetAddress *)0;
+ const InetAddress *hintToDest = (InetAddress *)0;
+
+ InetAddress destV4,destV6;
+ InetAddress sourceV4,sourceV6;
+ relayTo->getRendezvousAddresses(now,destV4,destV6);
+
+ const SharedPtr<Peer> sourcePeer(RR->topology->getPeer(source));
+ if (sourcePeer) {
+ sourcePeer->getRendezvousAddresses(now,sourceV4,sourceV6);
+ if ((destV6)&&(sourceV6)) {
+ hintToSource = &destV6;
+ hintToDest = &sourceV6;
+ } else if ((destV4)&&(sourceV4)) {
+ hintToSource = &destV4;
+ hintToDest = &sourceV4;
+ }
+
+ if ((hintToSource)&&(hintToDest)) {
+ unsigned int alt = (unsigned int)RR->node->prng() & 1; // randomize which hint we send first for obscure NAT-t reasons
+ const unsigned int completed = alt + 2;
+ while (alt != completed) {
+ if ((alt & 1) == 0) {
+ Packet outp(source,RR->identity.address(),Packet::VERB_RENDEZVOUS);
+ outp.append((uint8_t)0);
+ destination.appendTo(outp);
+ outp.append((uint16_t)hintToSource->port());
+ if (hintToSource->ss_family == AF_INET6) {
+ outp.append((uint8_t)16);
+ outp.append(hintToSource->rawIpData(),16);
+ } else {
+ outp.append((uint8_t)4);
+ outp.append(hintToSource->rawIpData(),4);
+ }
+ send(outp,true);
+ } else {
+ Packet outp(destination,RR->identity.address(),Packet::VERB_RENDEZVOUS);
+ outp.append((uint8_t)0);
+ source.appendTo(outp);
+ outp.append((uint16_t)hintToDest->port());
+ if (hintToDest->ss_family == AF_INET6) {
+ outp.append((uint8_t)16);
+ outp.append(hintToDest->rawIpData(),16);
+ } else {
+ outp.append((uint8_t)4);
+ outp.append(hintToDest->rawIpData(),4);
+ }
+ send(outp,true);
+ }
+ ++alt;
+ }
+ }
+ }
+ }
+ } else {
+#ifdef ZT_ENABLE_CLUSTER
+ if ((RR->cluster)&&(source != RR->identity.address())) {
+ RR->cluster->relayViaCluster(source,destination,packet.data(),packet.size(),_shouldUnite(now,source,destination));
+ return;
+ }
+#endif
+ relayTo = RR->topology->getUpstreamPeer(&source,1,true);
+ if (relayTo)
+ relayTo->sendDirect(packet.data(),packet.size(),now,true);
+ }
+ } else {
+ TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str());
+ }
+ } else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) {
+ // Packet is the head of a fragmented packet series
+
+ const uint64_t packetId = (
+ (((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) |
+ (((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) |
+ (((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) |
+ (((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) |
+ (((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) |
+ (((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) |
+ (((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) |
+ ((uint64_t)reinterpret_cast<const uint8_t *>(data)[7])
+ );
+
+ Mutex::Lock _l(_rxQueue_m);
+ RXQueueEntry *const rq = _findRXQueueEntry(now,packetId);
+
+ if ((!rq->timestamp)||(rq->packetId != packetId)) {
+ // If we have no other fragments yet, create an entry and save the head
+ //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str());
+
+ rq->timestamp = now;
+ rq->packetId = packetId;
+ rq->frag0.init(data,len,path,now);
+ rq->totalFragments = 0;
+ rq->haveFragments = 1;
+ rq->complete = false;
+ } else if (!(rq->haveFragments & 1)) {
+ // If we have other fragments but no head, see if we are complete with the head
+
+ if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) {
+ // We have all fragments -- assemble and process full Packet
+ //TRACE("packet %.16llx is complete, assembling and processing...",pid);
+
+ rq->frag0.init(data,len,path,now);
+ for(unsigned int f=1;f<rq->totalFragments;++f)
+ rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength());
+
+ if (rq->frag0.tryDecode(RR)) {
+ rq->timestamp = 0; // packet decoded, free entry
+ } else {
+ rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something
+ }
+ } else {
+ // Still waiting on more fragments, but keep the head
+ rq->frag0.init(data,len,path,now);
+ }
+ } // else this is a duplicate head, ignore
+ } else {
+ // Packet is unfragmented, so just process it
+ IncomingPacket packet(data,len,path,now);
+ if (!packet.tryDecode(RR)) {
+ Mutex::Lock _l(_rxQueue_m);
+ RXQueueEntry *rq = &(_rxQueue[ZT_RX_QUEUE_SIZE - 1]);
+ unsigned long i = ZT_RX_QUEUE_SIZE - 1;
+ while ((i)&&(rq->timestamp)) {
+ RXQueueEntry *tmp = &(_rxQueue[--i]);
+ if (tmp->timestamp < rq->timestamp)
+ rq = tmp;
+ }
+ rq->timestamp = now;
+ rq->packetId = packet.packetId();
+ rq->frag0 = packet;
+ rq->totalFragments = 1;
+ rq->haveFragments = 1;
+ rq->complete = true;
+ }
+ }
+
+ // --------------------------------------------------------------------
+ }
+ }
+ } catch (std::exception &ex) {
+ TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what());
+ } catch ( ... ) {
+ TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str());
+ }
+}
+
+void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len)
+{
+ if (!network->hasConfig())
+ return;
+
+ // Check if this packet is from someone other than the tap -- i.e. bridged in
+ bool fromBridged;
+ if ((fromBridged = (from != network->mac()))) {
+ if (!network->config().permitsBridging(RR->identity.address())) {
+ TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
+ return;
+ }
+ }
+
+ if (to.isMulticast()) {
+ MulticastGroup multicastGroup(to,0);
+
+ if (to.isBroadcast()) {
+ if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) {
+ /* IPv4 ARP is one of the few special cases that we impose upon what is
+ * otherwise a straightforward Ethernet switch emulation. Vanilla ARP
+ * is dumb old broadcast and simply doesn't scale. ZeroTier multicast
+ * groups have an additional field called ADI (additional distinguishing
+ * information) which was added specifically for ARP though it could
+ * be used for other things too. We then take ARP broadcasts and turn
+ * them into multicasts by stuffing the IP address being queried into
+ * the 32-bit ADI field. In practice this uses our multicast pub/sub
+ * system to implement a kind of extended/distributed ARP table. */
+ multicastGroup = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0));
+ } else if (!network->config().enableBroadcast()) {
+ // Don't transmit broadcasts if this network doesn't want them
+ TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id());
+ return;
+ }
+ } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) {
+ // IPv6 NDP emulation for certain very special patterns of private IPv6 addresses -- if enabled
+ if ((network->config().ndpEmulation())&&(reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation
+ Address v6EmbeddedAddress;
+ const uint8_t *const pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8;
+ const uint8_t *my6 = (const uint8_t *)0;
+
+ // ZT-RFC4193 address: fdNN:NNNN:NNNN:NNNN:NN99:93DD:DDDD:DDDD / 88 (one /128 per actual host)
+
+ // ZT-6PLANE address: fcXX:XXXX:XXDD:DDDD:DDDD:####:####:#### / 40 (one /80 per actual host)
+ // (XX - lower 32 bits of network ID XORed with higher 32 bits)
+
+ // For these to work, we must have a ZT-managed address assigned in one of the
+ // above formats, and the query must match its prefix.
+ for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) {
+ const InetAddress *const sip = &(network->config().staticIps[sipk]);
+ if (sip->ss_family == AF_INET6) {
+ my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr);
+ const unsigned int sipNetmaskBits = Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port);
+ if ((sipNetmaskBits == 88)&&(my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 /88 ???
+ unsigned int ptr = 0;
+ while (ptr != 11) {
+ if (pkt6[ptr] != my6[ptr])
+ break;
+ ++ptr;
+ }
+ if (ptr == 11) { // prefix match!
+ v6EmbeddedAddress.setTo(pkt6 + ptr,5);
+ break;
+ }
+ } else if (sipNetmaskBits == 40) { // ZT-6PLANE /40 ???
+ const uint32_t nwid32 = (uint32_t)((network->id() ^ (network->id() >> 32)) & 0xffffffff);
+ if ( (my6[0] == 0xfc) && (my6[1] == (uint8_t)((nwid32 >> 24) & 0xff)) && (my6[2] == (uint8_t)((nwid32 >> 16) & 0xff)) && (my6[3] == (uint8_t)((nwid32 >> 8) & 0xff)) && (my6[4] == (uint8_t)(nwid32 & 0xff))) {
+ unsigned int ptr = 0;
+ while (ptr != 5) {
+ if (pkt6[ptr] != my6[ptr])
+ break;
+ ++ptr;
+ }
+ if (ptr == 5) { // prefix match!
+ v6EmbeddedAddress.setTo(pkt6 + ptr,5);
+ break;
+ }
+ }
+ }
+ }
+ }
+
+ if ((v6EmbeddedAddress)&&(v6EmbeddedAddress != RR->identity.address())) {
+ const MAC peerMac(v6EmbeddedAddress,network->id());
+ TRACE("IPv6 NDP emulation: %.16llx: forging response for %s/%s",network->id(),v6EmbeddedAddress.toString().c_str(),peerMac.toString().c_str());
+
+ uint8_t adv[72];
+ adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00;
+ adv[4] = 0x00; adv[5] = 0x20;
+ adv[6] = 0x3a; adv[7] = 0xff;
+ for(int i=0;i<16;++i) adv[8 + i] = pkt6[i];
+ for(int i=0;i<16;++i) adv[24 + i] = my6[i];
+ adv[40] = 0x88; adv[41] = 0x00;
+ adv[42] = 0x00; adv[43] = 0x00; // future home of checksum
+ adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00;
+ for(int i=0;i<16;++i) adv[48 + i] = pkt6[i];
+ adv[64] = 0x02; adv[65] = 0x01;
+ adv[66] = peerMac[0]; adv[67] = peerMac[1]; adv[68] = peerMac[2]; adv[69] = peerMac[3]; adv[70] = peerMac[4]; adv[71] = peerMac[5];
+
+ uint16_t pseudo_[36];
+ uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_);
+ for(int i=0;i<32;++i) pseudo[i] = adv[8 + i];
+ pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20;
+ pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a;
+ for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i];
+ uint32_t checksum = 0;
+ for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]);
+ while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16);
+ checksum = ~checksum;
+ adv[42] = (checksum >> 8) & 0xff;
+ adv[43] = checksum & 0xff;
+
+ RR->node->putFrame(network->id(),network->userPtr(),peerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72);
+ return; // NDP emulation done. We have forged a "fake" reply, so no need to send actual NDP query.
+ } // else no NDP emulation
+ } // else no NDP emulation
+ }
+
+ // Check this after NDP emulation, since that has to be allowed in exactly this case
+ if (network->config().multicastLimit == 0) {
+ TRACE("%.16llx: dropped multicast: not allowed on network",network->id());
+ return;
+ }
+
+ /* Learn multicast groups for bridged-in hosts.
+ * Note that some OSes, most notably Linux, do this for you by learning
+ * multicast addresses on bridge interfaces and subscribing each slave.
+ * But in that case this does no harm, as the sets are just merged. */
+ if (fromBridged)
+ network->learnBridgedMulticastGroup(multicastGroup,RR->node->now());
+
+ //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),multicastGroup.toString().c_str(),etherTypeName(etherType),len);
+
+ // First pass sets noTee to false, but noTee is set to true in OutboundMulticast to prevent duplicates.
+ if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
+ TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
+ return;
+ }
+
+ RR->mc->send(
+ network->config().multicastLimit,
+ RR->node->now(),
+ network->id(),
+ network->config().disableCompression(),
+ network->config().activeBridges(),
+ multicastGroup,
+ (fromBridged) ? from : MAC(),
+ etherType,
+ data,
+ len);
+ } else if (to == network->mac()) {
+ // Destination is this node, so just reinject it
+ RR->node->putFrame(network->id(),network->userPtr(),from,to,etherType,vlanId,data,len);
+ } else if (to[0] == MAC::firstOctetForNetwork(network->id())) {
+ // Destination is another ZeroTier peer on the same network
+
+ Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this
+ SharedPtr<Peer> toPeer(RR->topology->getPeer(toZT));
+
+ if (!network->filterOutgoingPacket(false,RR->identity.address(),toZT,from,to,(const uint8_t *)data,len,etherType,vlanId)) {
+ TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
+ return;
+ }
+
+ if (fromBridged) {
+ Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME);
+ outp.append(network->id());
+ outp.append((unsigned char)0x00);
+ to.appendTo(outp);
+ from.appendTo(outp);
+ outp.append((uint16_t)etherType);
+ outp.append(data,len);
+ if (!network->config().disableCompression())
+ outp.compress();
+ send(outp,true);
+ } else {
+ Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME);
+ outp.append(network->id());
+ outp.append((uint16_t)etherType);
+ outp.append(data,len);
+ if (!network->config().disableCompression())
+ outp.compress();
+ send(outp,true);
+ }
+
+ //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom);
+ } else {
+ // Destination is bridged behind a remote peer
+
+ // We filter with a NULL destination ZeroTier address first. Filtrations
+ // for each ZT destination are also done below. This is the same rationale
+ // and design as for multicast.
+ if (!network->filterOutgoingPacket(false,RR->identity.address(),Address(),from,to,(const uint8_t *)data,len,etherType,vlanId)) {
+ TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
+ return;
+ }
+
+ Address bridges[ZT_MAX_BRIDGE_SPAM];
+ unsigned int numBridges = 0;
+
+ /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */
+ bridges[0] = network->findBridgeTo(to);
+ std::vector<Address> activeBridges(network->config().activeBridges());
+ if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) {
+ /* We have a known bridge route for this MAC, send it there. */
+ ++numBridges;
+ } else if (!activeBridges.empty()) {
+ /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active
+ * bridges. If someone responds, we'll learn the route. */
+ std::vector<Address>::const_iterator ab(activeBridges.begin());
+ if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) {
+ // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all
+ while (ab != activeBridges.end()) {
+ bridges[numBridges++] = *ab;
+ ++ab;
+ }
+ } else {
+ // Otherwise pick a random set of them
+ while (numBridges < ZT_MAX_BRIDGE_SPAM) {
+ if (ab == activeBridges.end())
+ ab = activeBridges.begin();
+ if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) {
+ bridges[numBridges++] = *ab;
+ ++ab;
+ } else ++ab;
+ }
+ }
+ }
+
+ for(unsigned int b=0;b<numBridges;++b) {
+ if (network->filterOutgoingPacket(true,RR->identity.address(),bridges[b],from,to,(const uint8_t *)data,len,etherType,vlanId)) {
+ Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME);
+ outp.append(network->id());
+ outp.append((uint8_t)0x00);
+ to.appendTo(outp);
+ from.appendTo(outp);
+ outp.append((uint16_t)etherType);
+ outp.append(data,len);
+ if (!network->config().disableCompression())
+ outp.compress();
+ send(outp,true);
+ } else {
+ TRACE("%.16llx: %s -> %s %s packet not sent: filterOutgoingPacket() returned false",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType));
+ }
+ }
+ }
+}
+
+void Switch::send(Packet &packet,bool encrypt)
+{
+ if (packet.destination() == RR->identity.address()) {
+ TRACE("BUG: caught attempt to send() to self, ignored");
+ return;
+ }
+
+ if (!_trySend(packet,encrypt)) {
+ Mutex::Lock _l(_txQueue_m);
+ _txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt));
+ }
+}
+
+void Switch::requestWhois(const Address &addr)
+{
+ bool inserted = false;
+ {
+ Mutex::Lock _l(_outstandingWhoisRequests_m);
+ WhoisRequest &r = _outstandingWhoisRequests[addr];
+ if (r.lastSent) {
+ r.retries = 0; // reset retry count if entry already existed, but keep waiting and retry again after normal timeout
+ } else {
+ r.lastSent = RR->node->now();
+ inserted = true;
+ }
+ }
+ if (inserted)
+ _sendWhoisRequest(addr,(const Address *)0,0);
+}
+
+void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer)
+{
+ { // cancel pending WHOIS since we now know this peer
+ Mutex::Lock _l(_outstandingWhoisRequests_m);
+ _outstandingWhoisRequests.erase(peer->address());
+ }
+
+ { // finish processing any packets waiting on peer's public key / identity
+ Mutex::Lock _l(_rxQueue_m);
+ unsigned long i = ZT_RX_QUEUE_SIZE;
+ while (i) {
+ RXQueueEntry *rq = &(_rxQueue[--i]);
+ if ((rq->timestamp)&&(rq->complete)) {
+ if (rq->frag0.tryDecode(RR))
+ rq->timestamp = 0;
+ }
+ }
+ }
+
+ { // finish sending any packets waiting on peer's public key / identity
+ Mutex::Lock _l(_txQueue_m);
+ for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
+ if (txi->dest == peer->address()) {
+ if (_trySend(txi->packet,txi->encrypt))
+ _txQueue.erase(txi++);
+ else ++txi;
+ } else ++txi;
+ }
+ }
+}
+
+unsigned long Switch::doTimerTasks(uint64_t now)
+{
+ unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum
+
+ { // Retry outstanding WHOIS requests
+ Mutex::Lock _l(_outstandingWhoisRequests_m);
+ Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests);
+ Address *a = (Address *)0;
+ WhoisRequest *r = (WhoisRequest *)0;
+ while (i.next(a,r)) {
+ const unsigned long since = (unsigned long)(now - r->lastSent);
+ if (since >= ZT_WHOIS_RETRY_DELAY) {
+ if (r->retries >= ZT_MAX_WHOIS_RETRIES) {
+ TRACE("WHOIS %s timed out",a->toString().c_str());
+ _outstandingWhoisRequests.erase(*a);
+ } else {
+ r->lastSent = now;
+ r->peersConsulted[r->retries] = _sendWhoisRequest(*a,r->peersConsulted,(r->retries > 1) ? r->retries : 0);
+ TRACE("WHOIS %s (retry %u)",a->toString().c_str(),r->retries);
+ ++r->retries;
+ nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY);
+ }
+ } else {
+ nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since);
+ }
+ }
+ }
+
+ { // Time out TX queue packets that never got WHOIS lookups or other info.
+ Mutex::Lock _l(_txQueue_m);
+ for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) {
+ if (_trySend(txi->packet,txi->encrypt))
+ _txQueue.erase(txi++);
+ else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) {
+ TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str());
+ _txQueue.erase(txi++);
+ } else ++txi;
+ }
+ }
+
+ { // Remove really old last unite attempt entries to keep table size controlled
+ Mutex::Lock _l(_lastUniteAttempt_m);
+ Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt);
+ _LastUniteKey *k = (_LastUniteKey *)0;
+ uint64_t *v = (uint64_t *)0;
+ while (i.next(k,v)) {
+ if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8))
+ _lastUniteAttempt.erase(*k);
+ }
+ }
+
+ return nextDelay;
+}
+
+bool Switch::_shouldUnite(const uint64_t now,const Address &source,const Address &destination)
+{
+ Mutex::Lock _l(_lastUniteAttempt_m);
+ uint64_t &ts = _lastUniteAttempt[_LastUniteKey(source,destination)];
+ if ((now - ts) >= ZT_MIN_UNITE_INTERVAL) {
+ ts = now;
+ return true;
+ }
+ return false;
+}
+
+Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted)
+{
+ SharedPtr<Peer> upstream(RR->topology->getUpstreamPeer(peersAlreadyConsulted,numPeersAlreadyConsulted,false));
+ if (upstream) {
+ Packet outp(upstream->address(),RR->identity.address(),Packet::VERB_WHOIS);
+ addr.appendTo(outp);
+ RR->node->expectReplyTo(outp.packetId());
+ send(outp,true);
+ }
+ return Address();
+}
+
+bool Switch::_trySend(Packet &packet,bool encrypt)
+{
+ SharedPtr<Path> viaPath;
+ const uint64_t now = RR->node->now();
+ const Address destination(packet.destination());
+
+#ifdef ZT_ENABLE_CLUSTER
+ uint64_t clusterMostRecentTs = 0;
+ int clusterMostRecentMemberId = -1;
+ uint8_t clusterPeerSecret[ZT_PEER_SECRET_KEY_LENGTH];
+ if (RR->cluster)
+ clusterMostRecentMemberId = RR->cluster->checkSendViaCluster(destination,clusterMostRecentTs,clusterPeerSecret);
+#endif
+
+ const SharedPtr<Peer> peer(RR->topology->getPeer(destination));
+ if (peer) {
+ /* First get the best path, and if it's dead (and this is not a root)
+ * we attempt to re-activate that path but this packet will flow
+ * upstream. If the path comes back alive, it will be used in the future.
+ * For roots we don't do the alive check since roots are not required
+ * to send heartbeats "down" and because we have to at least try to
+ * go somewhere. */
+
+ viaPath = peer->getBestPath(now,false);
+ if ( (viaPath) && (!viaPath->alive(now)) && (!RR->topology->isUpstream(peer->identity())) ) {
+#ifdef ZT_ENABLE_CLUSTER
+ if ((clusterMostRecentMemberId < 0)||(viaPath->lastIn() > clusterMostRecentTs)) {
+#endif
+ if ((now - viaPath->lastOut()) > std::max((now - viaPath->lastIn()) * 4,(uint64_t)ZT_PATH_MIN_REACTIVATE_INTERVAL)) {
+ peer->attemptToContactAt(viaPath->localAddress(),viaPath->address(),now,false,viaPath->nextOutgoingCounter());
+ viaPath->sent(now);
+ }
+#ifdef ZT_ENABLE_CLUSTER
+ }
+#endif
+ viaPath.zero();
+ }
+
+#ifdef ZT_ENABLE_CLUSTER
+ if (clusterMostRecentMemberId >= 0) {
+ if ((viaPath)&&(viaPath->lastIn() < clusterMostRecentTs))
+ viaPath.zero();
+ } else if (!viaPath) {
+#else
+ if (!viaPath) {
+#endif
+ peer->tryMemorizedPath(now); // periodically attempt memorized or statically defined paths, if any are known
+ const SharedPtr<Peer> relay(RR->topology->getUpstreamPeer());
+ if ( (!relay) || (!(viaPath = relay->getBestPath(now,false))) ) {
+ if (!(viaPath = peer->getBestPath(now,true)))
+ return false;
+ }
+#ifdef ZT_ENABLE_CLUSTER
+ }
+#else
+ }
+#endif
+ } else {
+#ifdef ZT_ENABLE_CLUSTER
+ if (clusterMostRecentMemberId < 0) {
+#else
+ requestWhois(destination);
+ return false; // if we are not in cluster mode, there is no way we can send without knowing the peer directly
+#endif
+#ifdef ZT_ENABLE_CLUSTER
+ }
+#endif
+ }
+
+ unsigned int chunkSize = std::min(packet.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU);
+ packet.setFragmented(chunkSize < packet.size());
+
+#ifdef ZT_ENABLE_CLUSTER
+ const uint64_t trustedPathId = (viaPath) ? RR->topology->getOutboundPathTrust(viaPath->address()) : 0;
+ if (trustedPathId) {
+ packet.setTrusted(trustedPathId);
+ } else {
+ packet.armor((clusterMostRecentMemberId >= 0) ? clusterPeerSecret : peer->key(),encrypt,(viaPath) ? viaPath->nextOutgoingCounter() : 0);
+ }
+#else
+ const uint64_t trustedPathId = RR->topology->getOutboundPathTrust(viaPath->address());
+ if (trustedPathId) {
+ packet.setTrusted(trustedPathId);
+ } else {
+ packet.armor(peer->key(),encrypt,viaPath->nextOutgoingCounter());
+ }
+#endif
+
+#ifdef ZT_ENABLE_CLUSTER
+ if ( ((viaPath)&&(viaPath->send(RR,packet.data(),chunkSize,now))) || ((clusterMostRecentMemberId >= 0)&&(RR->cluster->sendViaCluster(clusterMostRecentMemberId,destination,packet.data(),chunkSize))) ) {
+#else
+ if (viaPath->send(RR,packet.data(),chunkSize,now)) {
+#endif
+ if (chunkSize < packet.size()) {
+ // Too big for one packet, fragment the rest
+ unsigned int fragStart = chunkSize;
+ unsigned int remaining = packet.size() - chunkSize;
+ unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
+ if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining)
+ ++fragsRemaining;
+ const unsigned int totalFragments = fragsRemaining + 1;
+
+ for(unsigned int fno=1;fno<totalFragments;++fno) {
+ chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH));
+ Packet::Fragment frag(packet,fragStart,chunkSize,fno,totalFragments);
+#ifdef ZT_ENABLE_CLUSTER
+ if (viaPath)
+ viaPath->send(RR,frag.data(),frag.size(),now);
+ else if (clusterMostRecentMemberId >= 0)
+ RR->cluster->sendViaCluster(clusterMostRecentMemberId,destination,frag.data(),frag.size());
+#else
+ viaPath->send(RR,frag.data(),frag.size(),now);
+#endif
+ fragStart += chunkSize;
+ remaining -= chunkSize;
+ }
+ }
+ }
+
+ return true;
+}
+
+} // namespace ZeroTier