summaryrefslogtreecommitdiff
path: root/method/AnomalyTransformer.py
blob: 9dba21a851dc43896c1b3b0f77c0949fb61cdd16 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import math
from math import sqrt
import torch.utils.data as tud


class PositionalEmbedding(nn.Module):
    def __init__(self, d_model, max_len=5000):
        super(PositionalEmbedding, self).__init__()
        # Compute the positional encodings once in log space.
        pe = torch.zeros(max_len, d_model).float()
        pe.require_grad = False

        position = torch.arange(0, max_len).float().unsqueeze(1)
        div_term = (torch.arange(0, d_model, 2).float() * -(math.log(10000.0) / d_model)).exp()

        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)

        pe = pe.unsqueeze(0)
        self.register_buffer('pe', pe)

    def forward(self, x):
        return self.pe[:, :x.size(1)]


class TokenEmbedding(nn.Module):
    def __init__(self, c_in, d_model):
        super(TokenEmbedding, self).__init__()
        padding = 1 if torch.__version__ >= '1.5.0' else 2
        self.tokenConv = nn.Conv1d(in_channels=c_in, out_channels=d_model,
                                   kernel_size=3, padding=padding, padding_mode='circular', bias=False)
        for m in self.modules():
            if isinstance(m, nn.Conv1d):
                nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='leaky_relu')

    def forward(self, x):
        x = self.tokenConv(x.permute(0, 2, 1)).transpose(1, 2)
        return x


class DataEmbedding(nn.Module):
    def __init__(self, c_in, d_model, dropout=0.0):
        super(DataEmbedding, self).__init__()

        self.value_embedding = TokenEmbedding(c_in=c_in, d_model=d_model)
        self.position_embedding = PositionalEmbedding(d_model=d_model)

        self.dropout = nn.Dropout(p=dropout)

    def forward(self, x):
        x = self.value_embedding(x) + self.position_embedding(x)
        return self.dropout(x)


class TriangularCausalMask():
    def __init__(self, B, L, device="cpu"):
        mask_shape = [B, 1, L, L]
        with torch.no_grad():
            self._mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1).to(device)

    @property
    def mask(self):
        return self._mask


class AnomalyAttention(nn.Module):
    def __init__(self, win_size, mask_flag=True, scale=None, attention_dropout=0.0, output_attention=False):
        super(AnomalyAttention, self).__init__()
        self.scale = scale
        self.mask_flag = mask_flag
        self.output_attention = output_attention
        self.dropout = nn.Dropout(attention_dropout)
        window_size = win_size
        self.distances = torch.zeros((window_size, window_size)).cuda()
        for i in range(window_size):
            for j in range(window_size):
                self.distances[i][j] = abs(i - j)

    def forward(self, queries, keys, values, sigma, attn_mask):
        B, L, H, E = queries.shape
        _, S, _, D = values.shape
        scale = self.scale or 1. / sqrt(E)

        scores = torch.einsum("blhe,bshe->bhls", queries, keys)
        if self.mask_flag:
            if attn_mask is None:
                attn_mask = TriangularCausalMask(B, L, device=queries.device)
            scores.masked_fill_(attn_mask.mask, -np.inf)
        attn = scale * scores

        sigma = sigma.transpose(1, 2)  # B L H ->  B H L
        window_size = attn.shape[-1]
        sigma = torch.sigmoid(sigma * 5) + 1e-5
        sigma = torch.pow(3, sigma) - 1
        sigma = sigma.unsqueeze(-1).repeat(1, 1, 1, window_size)  # B H L L
        prior = self.distances.unsqueeze(0).unsqueeze(0).repeat(sigma.shape[0], sigma.shape[1], 1, 1).cuda()
        prior = 1.0 / (math.sqrt(2 * math.pi) * sigma) * torch.exp(-prior ** 2 / 2 / (sigma ** 2))

        series = self.dropout(torch.softmax(attn, dim=-1))
        V = torch.einsum("bhls,bshd->blhd", series, values)

        if self.output_attention:
            return (V.contiguous(), series, prior, sigma)
        else:
            return (V.contiguous(), None)


class AttentionLayer(nn.Module):
    def __init__(self, attention, d_model, n_heads, d_keys=None,
                 d_values=None):
        super(AttentionLayer, self).__init__()

        d_keys = d_keys or (d_model // n_heads)
        d_values = d_values or (d_model // n_heads)
        self.norm = nn.LayerNorm(d_model)
        self.inner_attention = attention
        self.query_projection = nn.Linear(d_model,
                                          d_keys * n_heads)
        self.key_projection = nn.Linear(d_model,
                                        d_keys * n_heads)
        self.value_projection = nn.Linear(d_model,
                                          d_values * n_heads)
        self.sigma_projection = nn.Linear(d_model,
                                          n_heads)
        self.out_projection = nn.Linear(d_values * n_heads, d_model)

        self.n_heads = n_heads

    def forward(self, queries, keys, values, attn_mask):
        B, L, _ = queries.shape
        _, S, _ = keys.shape
        H = self.n_heads
        x = queries
        queries = self.query_projection(queries).view(B, L, H, -1)
        keys = self.key_projection(keys).view(B, S, H, -1)
        values = self.value_projection(values).view(B, S, H, -1)
        sigma = self.sigma_projection(x).view(B, L, H)

        out, series, prior, sigma = self.inner_attention(
            queries,
            keys,
            values,
            sigma,
            attn_mask
        )
        out = out.view(B, L, -1)

        return self.out_projection(out), series, prior, sigma


class EncoderLayer(nn.Module):
    def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
        super(EncoderLayer, self).__init__()
        d_ff = d_ff or 4 * d_model
        self.attention = attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, attn_mask=None):
        new_x, attn, mask, sigma = self.attention(
            x, x, x,
            attn_mask=attn_mask
        )
        x = x + self.dropout(new_x)
        y = x = self.norm1(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1, 1))))
        y = self.dropout(self.conv2(y).transpose(-1, 1))

        return self.norm2(x + y), attn, mask, sigma


class Encoder(nn.Module):
    def __init__(self, attn_layers, norm_layer=None):
        super(Encoder, self).__init__()
        self.attn_layers = nn.ModuleList(attn_layers)
        self.norm = norm_layer

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        series_list = []
        prior_list = []
        sigma_list = []
        for attn_layer in self.attn_layers:
            x, series, prior, sigma = attn_layer(x, attn_mask=attn_mask)
            series_list.append(series)
            prior_list.append(prior)
            sigma_list.append(sigma)

        if self.norm is not None:
            x = self.norm(x)

        return x, series_list, prior_list, sigma_list


class Model(nn.Module):
    def __init__(self, customs: {}, dataloader: tud.DataLoader):
        super(Model, self).__init__()
        win_size = int(customs["input_size"])
        enc_in = c_out = dataloader.dataset.train_inputs.shape[-1]
        d_model = 512
        n_heads = 8
        e_layers = 3
        d_ff = 512
        dropout = 0.0
        activation = 'gelu'
        output_attention = True
        self.k = 3
        self.win_size = win_size

        self.name = "AnomalyTransformer"
        # Encoding
        self.embedding = DataEmbedding(enc_in, d_model, dropout)

        # Encoder
        self.encoder = Encoder(
            [
                EncoderLayer(
                    AttentionLayer(
                        AnomalyAttention(win_size, False, attention_dropout=dropout, output_attention=output_attention),
                        d_model, n_heads),
                    d_model,
                    d_ff,
                    dropout=dropout,
                    activation=activation
                ) for l in range(e_layers)
            ],
            norm_layer=torch.nn.LayerNorm(d_model)
        )

        self.projection = nn.Linear(d_model, c_out, bias=True)

    def forward(self, x):
        enc_out = self.embedding(x)
        enc_out, series, prior, sigmas = self.encoder(enc_out)
        enc_out = self.projection(enc_out)
        return enc_out, series, prior, sigmas

    @staticmethod
    def my_kl_loss(p, q):
        res = p * (torch.log(p + 0.0001) - torch.log(q + 0.0001))
        return torch.mean(torch.sum(res, dim=-1), dim=1)

    def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
        output, series, prior, _ = self.forward(x)
        series_loss = 0.0
        prior_loss = 0.0
        for u in range(len(prior)):
            series_loss += (torch.mean(self.my_kl_loss(series[u], (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)).detach())) +
                            torch.mean(self.my_kl_loss((prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)).detach(), series[u])))

            prior_loss += (torch.mean(self.my_kl_loss((prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)), series[u].detach())) +
                           torch.mean(self.my_kl_loss(series[u].detach(), (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1, self.win_size)))))
        series_loss = series_loss / len(prior)
        prior_loss = prior_loss / len(prior)
        rec_loss = nn.MSELoss()(output, x)

        loss1 = rec_loss - self.k * series_loss
        loss2 = rec_loss + self.k * prior_loss

        # Minimax strategy
        loss1.backward(retain_graph=True)
        loss2.backward()

        return loss1.item()

    def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
        temperature = 50
        output, series, prior, _ = self.forward(x)

        loss = torch.mean(nn.MSELoss()(x, output), dim=-1)

        series_loss = 0.0
        prior_loss = 0.0
        for u in range(len(prior)):
            if u == 0:
                series_loss = self.my_kl_loss(series[u], (
                        prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
                                                                                               self.win_size)).detach()) * temperature
                prior_loss = self.my_kl_loss(
                    (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
                                                                                            self.win_size)),
                    series[u].detach()) * temperature
            else:
                series_loss += self.my_kl_loss(series[u], (
                        prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
                                                                                               self.win_size)).detach()) * temperature
                prior_loss += self.my_kl_loss(
                    (prior[u] / torch.unsqueeze(torch.sum(prior[u], dim=-1), dim=-1).repeat(1, 1, 1,
                                                                                            self.win_size)),
                    series[u].detach()) * temperature
        metric = torch.softmax((-series_loss - prior_loss), dim=-1)

        cri = metric * loss
        cri = cri.mean(dim=-1)
        return cri, None