summaryrefslogtreecommitdiff
path: root/method/MtadGatAtt.py
diff options
context:
space:
mode:
Diffstat (limited to 'method/MtadGatAtt.py')
-rw-r--r--method/MtadGatAtt.py647
1 files changed, 647 insertions, 0 deletions
diff --git a/method/MtadGatAtt.py b/method/MtadGatAtt.py
new file mode 100644
index 0000000..7ee50d5
--- /dev/null
+++ b/method/MtadGatAtt.py
@@ -0,0 +1,647 @@
+import torch
+import torch.nn as nn
+from math import sqrt
+import torch.nn.functional as F
+import numpy as np
+import torch.utils.data as tud
+
+
+class ConvLayer(nn.Module):
+ """1-D Convolution layer to extract high-level features of each time-series input
+ :param n_features: Number of input features/nodes
+ :param window_size: length of the input sequence
+ :param kernel_size: size of kernel to use in the convolution operation
+ """
+
+ def __init__(self, n_features, kernel_size=7):
+ super(ConvLayer, self).__init__()
+ self.padding = nn.ConstantPad1d((kernel_size - 1) // 2, 0.0)
+ self.conv = nn.Conv1d(in_channels=n_features, out_channels=n_features, kernel_size=kernel_size)
+ self.relu = nn.ReLU()
+
+ def forward(self, x):
+ x = x.permute(0, 2, 1)
+ x = self.padding(x)
+ x = self.relu(self.conv(x))
+ return x.permute(0, 2, 1) # Permute back
+
+
+class FeatureAttentionLayer(nn.Module):
+ """Single Graph Feature/Spatial Attention Layer
+ :param n_features: Number of input features/nodes
+ :param window_size: length of the input sequence
+ :param dropout: percentage of nodes to dropout
+ :param alpha: negative slope used in the leaky rely activation function
+ :param embed_dim: embedding dimension (output dimension of linear transformation)
+ :param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
+ :param use_bias: whether to include a bias term in the attention layer
+ """
+
+ def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True,
+ use_softmax=True):
+ super(FeatureAttentionLayer, self).__init__()
+ self.n_features = n_features
+ self.window_size = window_size
+ self.dropout = dropout
+ self.embed_dim = embed_dim if embed_dim is not None else window_size
+ self.use_gatv2 = use_gatv2
+ self.num_nodes = n_features
+ self.use_bias = use_bias
+ self.use_softmax = use_softmax
+
+ # Because linear transformation is done after concatenation in GATv2
+ if self.use_gatv2:
+ self.embed_dim *= 2
+ lin_input_dim = 2 * window_size
+ a_input_dim = self.embed_dim
+ else:
+ lin_input_dim = window_size
+ a_input_dim = 2 * self.embed_dim
+
+ self.lin = nn.Linear(lin_input_dim, self.embed_dim)
+ self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
+ nn.init.xavier_uniform_(self.a.data, gain=1.414)
+
+ if self.use_bias:
+ self.bias = nn.Parameter(torch.ones(n_features, n_features))
+
+ self.leakyrelu = nn.LeakyReLU(alpha)
+ self.sigmoid = nn.Sigmoid()
+
+ def forward(self, x):
+ # x shape (b, n, k): b - batch size, n - window size, k - number of features
+ # For feature attention we represent a node as the values of a particular feature across all timestamps
+
+ x = x.permute(0, 2, 1)
+
+ # 'Dynamic' GAT attention
+ # Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
+ # Linear transformation applied after concatenation and attention layer applied after leakyrelu
+ if self.use_gatv2:
+ a_input = self._make_attention_input(x) # (b, k, k, 2*window_size)
+ a_input = self.leakyrelu(self.lin(a_input)) # (b, k, k, embed_dim)
+ e = torch.matmul(a_input, self.a).squeeze(3) # (b, k, k, 1)
+
+ # Original GAT attention
+ else:
+ Wx = self.lin(x) # (b, k, k, embed_dim)
+ a_input = self._make_attention_input(Wx) # (b, k, k, 2*embed_dim)
+ e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, k, k, 1)
+
+ if self.use_bias:
+ e += self.bias
+
+ # Attention weights
+ if self.use_softmax:
+ e = torch.softmax(e, dim=2)
+ attention = torch.dropout(e, self.dropout, train=self.training)
+
+ # Computing new node features using the attention
+ h = self.sigmoid(torch.matmul(attention, x))
+
+ return h.permute(0, 2, 1)
+
+ def _make_attention_input(self, v):
+ """Preparing the feature attention mechanism.
+ Creating matrix with all possible combinations of concatenations of node.
+ Each node consists of all values of that node within the window
+ v1 || v1,
+ ...
+ v1 || vK,
+ v2 || v1,
+ ...
+ v2 || vK,
+ ...
+ ...
+ vK || v1,
+ ...
+ vK || vK,
+ """
+
+ K = self.num_nodes
+ blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
+ blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
+ combined = torch.cat((blocks_repeating, blocks_alternating), dim=2) # (b, K*K, 2*window_size)
+
+ if self.use_gatv2:
+ return combined.view(v.size(0), K, K, 2 * self.window_size)
+ else:
+ return combined.view(v.size(0), K, K, 2 * self.embed_dim)
+
+
+class TemporalAttentionLayer(nn.Module):
+ """Single Graph Temporal Attention Layer
+ :param n_features: number of input features/nodes
+ :param window_size: length of the input sequence
+ :param dropout: percentage of nodes to dropout
+ :param alpha: negative slope used in the leaky rely activation function
+ :param embed_dim: embedding dimension (output dimension of linear transformation)
+ :param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
+ :param use_bias: whether to include a bias term in the attention layer
+
+ """
+
+ def __init__(self, n_features, window_size, dropout, alpha, embed_dim=None, use_gatv2=True, use_bias=True,
+ use_softmax=True):
+ super(TemporalAttentionLayer, self).__init__()
+ self.n_features = n_features
+ self.window_size = window_size
+ self.dropout = dropout
+ self.use_gatv2 = use_gatv2
+ self.embed_dim = embed_dim if embed_dim is not None else n_features
+ self.num_nodes = window_size
+ self.use_bias = use_bias
+ self.use_softmax = use_softmax
+
+ # Because linear transformation is performed after concatenation in GATv2
+ if self.use_gatv2:
+ self.embed_dim *= 2
+ lin_input_dim = 2 * n_features
+ a_input_dim = self.embed_dim
+ else:
+ lin_input_dim = n_features
+ a_input_dim = 2 * self.embed_dim
+
+ self.lin = nn.Linear(lin_input_dim, self.embed_dim)
+ self.a = nn.Parameter(torch.empty((a_input_dim, 1)))
+ nn.init.xavier_uniform_(self.a.data, gain=1.414)
+
+ if self.use_bias:
+ self.bias = nn.Parameter(torch.ones(window_size, window_size))
+
+ self.leakyrelu = nn.LeakyReLU(alpha)
+ self.sigmoid = nn.Sigmoid()
+
+ def forward(self, x):
+ # x shape (b, n, k): b - batch size, n - window size, k - number of features
+ # For temporal attention a node is represented as all feature values at a specific timestamp
+
+ # 'Dynamic' GAT attention
+ # Proposed by Brody et. al., 2021 (https://arxiv.org/pdf/2105.14491.pdf)
+ # Linear transformation applied after concatenation and attention layer applied after leakyrelu
+ if self.use_gatv2:
+ a_input = self._make_attention_input(x) # (b, n, n, 2*n_features)
+ a_input = self.leakyrelu(self.lin(a_input)) # (b, n, n, embed_dim)
+ e = torch.matmul(a_input, self.a).squeeze(3) # (b, n, n, 1)
+
+ # Original GAT attention
+ else:
+ Wx = self.lin(x) # (b, n, n, embed_dim)
+ a_input = self._make_attention_input(Wx) # (b, n, n, 2*embed_dim)
+ e = self.leakyrelu(torch.matmul(a_input, self.a)).squeeze(3) # (b, n, n, 1)
+
+ if self.use_bias:
+ e += self.bias # (b, n, n, 1)
+
+ # Attention weights
+ if self.use_softmax:
+ e = torch.softmax(e, dim=2)
+ attention = torch.dropout(e, self.dropout, train=self.training)
+
+ h = self.sigmoid(torch.matmul(attention, x)) # (b, n, k)
+
+ return h
+
+ def _make_attention_input(self, v):
+ """Preparing the temporal attention mechanism.
+ Creating matrix with all possible combinations of concatenations of node values:
+ (v1, v2..)_t1 || (v1, v2..)_t1
+ (v1, v2..)_t1 || (v1, v2..)_t2
+
+ ...
+ ...
+
+ (v1, v2..)_tn || (v1, v2..)_t1
+ (v1, v2..)_tn || (v1, v2..)_t2
+
+ """
+
+ K = self.num_nodes
+ blocks_repeating = v.repeat_interleave(K, dim=1) # Left-side of the matrix
+ blocks_alternating = v.repeat(1, K, 1) # Right-side of the matrix
+ combined = torch.cat((blocks_repeating, blocks_alternating), dim=2)
+
+ if self.use_gatv2:
+ return combined.view(v.size(0), K, K, 2 * self.n_features)
+ else:
+ return combined.view(v.size(0), K, K, 2 * self.embed_dim)
+
+
+class FullAttention(nn.Module):
+ def __init__(self, mask_flag=True, scale=None, attention_dropout=0.1, output_attention=False):
+ super(FullAttention, self).__init__()
+ self.scale = scale
+ self.mask_flag = mask_flag
+ self.output_attention = output_attention
+ self.dropout = nn.Dropout(attention_dropout)
+ self.relu_q = nn.ReLU()
+ self.relu_k = nn.ReLU()
+
+ @staticmethod
+ def TriangularCausalMask(B, L, S, device='cpu'):
+ mask_shape = [B, 1, L, S]
+ with torch.no_grad():
+ mask = torch.triu(torch.ones(mask_shape, dtype=torch.bool), diagonal=1)
+ return mask.to(device)
+
+ def forward(self, queries, keys, values, attn_mask):
+ B, L, H, E = queries.shape
+ _, S, _, D = values.shape
+ scale = self.scale or 1. / sqrt(E) # scale相对于取多少比例,取前1/根号n
+
+ scores = torch.einsum("blhe,bshe->bhls", queries, keys)
+ if self.mask_flag:
+ if attn_mask is None:
+ attn_mask = self.TriangularCausalMask(B, L, S, device=queries.device)
+
+ scores.masked_fill_(attn_mask, 0)
+
+ A = self.dropout(torch.softmax(scale * scores, dim=-1))
+ V = torch.einsum("bhls,bshd->blhd", A, values)
+
+ # queries = self.relu_q(queries)
+ # keys = self.relu_k(keys)
+ # KV = torch.einsum("blhe,bshe->bhls", keys, values)
+ # A = self.dropout(scale * KV)
+ # V = torch.einsum("bshd,bhls->blhd", queries, A)
+
+ if self.output_attention:
+ return (V.contiguous(), A)
+ else:
+ return (V.contiguous(), None)
+
+
+class ProbAttention(nn.Module):
+ def __init__(self, mask_flag=True, factor=2, scale=None, attention_dropout=0.1, output_attention=False):
+ super(ProbAttention, self).__init__()
+ self.factor = factor
+ self.scale = scale
+ self.mask_flag = mask_flag
+ self.output_attention = output_attention
+
+ @staticmethod
+ def ProbMask(B, H, D, index, scores, device='cpu'):
+ _mask = torch.ones(D, scores.shape[-2], dtype=torch.bool).triu(1)
+ _mask_ex = _mask[None, None, :].expand(B, H, D, scores.shape[-2])
+ indicator = _mask_ex.transpose(-2, -1)[torch.arange(B)[:, None, None],
+ torch.arange(H)[None, :, None],
+ index, :].transpose(-2, -1)
+ mask = indicator.view(scores.shape)
+ return mask.to(device)
+
+ def _prob_KV(self, K, V, sample_v, n_top): # n_top: c*ln(L_q)
+ # Q [B, H, L, D]
+ B, H, L, E_V = V.shape
+ _, _, _, E_K = K.shape
+
+ # calculate the sampled K_V
+
+ V_expand = V.transpose(-2, -1).unsqueeze(-2).expand(B, H, E_V, E_K, L)
+ index_sample = torch.randint(E_V, (E_K, sample_v)) # real U = U_part(factor*ln(L_k))*L_q
+ V_sample = V_expand[:, :, torch.arange(E_V).unsqueeze(1), index_sample, :]
+ K_V_sample = torch.matmul(K.transpose(-2, -1).unsqueeze(-2), V_sample.transpose(-2, -1)).squeeze()
+
+ # find the Top_k query with sparisty measurement
+ M = K_V_sample.max(-1)[0] - torch.div(K_V_sample.sum(-1), E_V)
+ M_top = M.topk(n_top, sorted=False)[1]
+
+ # use the reduced Q to calculate Q_K
+ V_reduce = V.transpose(-2, -1)[torch.arange(B)[:, None, None],
+ torch.arange(H)[None, :, None],
+ M_top, :].transpose(-2, -1) # factor*ln(L_q)
+ K_V = torch.matmul(K.transpose(-2, -1), V_reduce) # factor*ln(L_q)*L_k
+ #
+ return K_V, M_top
+
+ def _get_initial_context(self, V, L_Q):
+ B, H, L_V, D = V.shape
+ if not self.mask_flag:
+ # V_sum = V.sum(dim=-2)
+ V_sum = V.mean(dim=-2)
+ contex = V_sum.unsqueeze(-2).expand(B, H, L_Q, V_sum.shape[-1]).clone()
+ else: # use mask
+ assert (L_Q == L_V) # requires that L_Q == L_V, i.e. for self-attention only
+ contex = V.cumsum(dim=-2)
+ return contex
+
+ def _update_context(self, context_in, Q, scores, index, D_K, attn_mask):
+ B, H, L, D_Q = Q.shape
+
+ if self.mask_flag:
+ attn_mask = self.ProbMask(B, H, D_K, index, scores, device=Q.device)
+ scores.masked_fill_(attn_mask, -np.inf)
+
+ attn = torch.softmax(scores, dim=-1) # nn.Softmax(dim=-1)(scores)
+
+ context_in.transpose(-2, -1)[torch.arange(B)[:, None, None],
+ torch.arange(H)[None, :, None],
+ index, :] = torch.matmul(Q, attn).type_as(context_in).transpose(-2, -1)
+ if self.output_attention:
+ attns = (torch.ones([B, H, D_K, D_K]) / D_K).type_as(attn)
+ attns[torch.arange(B)[:, None, None], torch.arange(H)[None, :, None], index, :] = attn
+ return (context_in, attns)
+ else:
+ return (context_in, None)
+
+ def forward(self, queries, keys, values, attn_mask):
+ # B, L_Q, H, D = queries.shape
+ # _, L_K, _, _ = keys.shape
+
+ B, L, H, D_K = keys.shape
+ _, _, _, D_V = values.shape
+
+ queries = queries.transpose(2, 1)
+ keys = keys.transpose(2, 1)
+ values = values.transpose(2, 1)
+
+ U_part = self.factor * np.ceil(np.log(D_V)).astype('int').item() # c*ln(L_k)
+ u = self.factor * np.ceil(np.log(D_K)).astype('int').item() # c*ln(L_q)
+
+ U_part = U_part if U_part < D_V else D_V
+ u = u if u < D_K else D_K
+
+ scores_top, index = self._prob_KV(keys, values, sample_v=U_part, n_top=u)
+
+ # add scale factor
+ scale = self.scale or 1. / sqrt(D_K)
+ if scale is not None:
+ scores_top = scores_top * scale
+ # get the context
+ context = self._get_initial_context(queries, L)
+ # update the context with selected top_k queries
+ context, attn = self._update_context(context, queries, scores_top, index, D_K, attn_mask)
+
+ return context.contiguous(), attn
+
+
+class AttentionBlock(nn.Module):
+ def __init__(self, d_model, n_model, n_heads=8, d_keys=None, d_values=None):
+ super(AttentionBlock, self).__init__()
+
+ d_keys = d_keys or (d_model // n_heads)
+ d_values = d_values or (d_model // n_heads)
+ self.inner_attention = FullAttention()
+ # self.inner_attention = ProbAttention(device=device)
+ self.query_projection = nn.Linear(d_model, d_keys * n_heads)
+ self.key_projection = nn.Linear(d_model, d_keys * n_heads)
+ self.value_projection = nn.Linear(d_model, d_values * n_heads)
+ self.out_projection = nn.Linear(d_values * n_heads, d_model)
+ self.n_heads = n_heads
+ self.layer_norm = nn.LayerNorm(d_model, eps=1e-6)
+
+ def forward(self, queries, keys, values, attn_mask):
+ '''
+ Q: [batch_size, len_q, d_k]
+ K: [batch_size, len_k, d_k]
+ V: [batch_size, len_v(=len_k), d_v]
+ attn_mask: [batch_size, seq_len, seq_len]
+ '''
+ batch_size, len_q, _ = queries.shape
+ _, len_k, _ = keys.shape
+
+ queries = self.query_projection(queries).view(batch_size, len_q, self.n_heads, -1)
+ keys = self.key_projection(keys).view(batch_size, len_k, self.n_heads, -1)
+ values = self.value_projection(values).view(batch_size, len_k, self.n_heads, -1)
+
+ out, attn = self.inner_attention(
+ queries,
+ keys,
+ values,
+ attn_mask
+ )
+ out = out.view(batch_size, len_q, -1)
+ out = self.out_projection(out)
+ out = self.layer_norm(out)
+ return out, attn
+
+
+class GRULayer(nn.Module):
+ """Gated Recurrent Unit (GRU) Layer
+ :param in_dim: number of input features
+ :param hid_dim: hidden size of the GRU
+ :param n_layers: number of layers in GRU
+ :param dropout: dropout rate
+ """
+
+ def __init__(self, in_dim, hid_dim, n_layers, dropout):
+ super(GRULayer, self).__init__()
+ self.hid_dim = hid_dim
+ self.n_layers = n_layers
+ self.dropout = 0.0 if n_layers == 1 else dropout
+ self.gru = nn.GRU(in_dim, hid_dim, num_layers=n_layers, batch_first=True, dropout=self.dropout)
+
+ def forward(self, x):
+ out, h = self.gru(x)
+ out, h = out[-1, :, :], h[-1, :, :] # Extracting from last layer
+ return out, h
+
+
+class RNNDecoder(nn.Module):
+ """GRU-based Decoder network that converts latent vector into output
+ :param in_dim: number of input features
+ :param n_layers: number of layers in RNN
+ :param hid_dim: hidden size of the RNN
+ :param dropout: dropout rate
+ """
+
+ def __init__(self, in_dim, hid_dim, n_layers, dropout):
+ super(RNNDecoder, self).__init__()
+ self.in_dim = in_dim
+ self.dropout = 0.0 if n_layers == 1 else dropout
+ self.rnn = nn.GRU(in_dim, hid_dim, n_layers, batch_first=True, dropout=self.dropout)
+
+ def forward(self, x):
+ decoder_out, _ = self.rnn(x)
+ return decoder_out
+
+
+class ReconstructionModel(nn.Module):
+ """Reconstruction Model
+ :param window_size: length of the input sequence
+ :param in_dim: number of input features
+ :param n_layers: number of layers in RNN
+ :param hid_dim: hidden size of the RNN
+ :param in_dim: number of output features
+ :param dropout: dropout rate
+ """
+
+ def __init__(self, window_size, in_dim, hid_dim, out_dim, n_layers, dropout):
+ super(ReconstructionModel, self).__init__()
+ self.window_size = window_size
+ self.decoder = RNNDecoder(in_dim, hid_dim, n_layers, dropout)
+ self.fc = nn.Linear(hid_dim, out_dim)
+
+ def forward(self, x):
+ # x will be last hidden state of the GRU layer
+ h_end = x
+ h_end_rep = h_end.repeat_interleave(self.window_size, dim=1).view(x.size(0), self.window_size, -1)
+
+ decoder_out = self.decoder(h_end_rep)
+ out = self.fc(decoder_out)
+ return out
+
+
+class Forecasting_Model(nn.Module):
+ """Forecasting model (fully-connected network)
+ :param in_dim: number of input features
+ :param hid_dim: hidden size of the FC network
+ :param out_dim: number of output features
+ :param n_layers: number of FC layers
+ :param dropout: dropout rate
+ """
+
+ def __init__(self, in_dim, hid_dim, out_dim, n_layers, dropout):
+ super(Forecasting_Model, self).__init__()
+ layers = [nn.Linear(in_dim, hid_dim)]
+ for _ in range(n_layers - 1):
+ layers.append(nn.Linear(hid_dim, hid_dim))
+
+ layers.append(nn.Linear(hid_dim, out_dim))
+
+ self.layers = nn.ModuleList(layers)
+ self.dropout = nn.Dropout(dropout)
+ self.relu = nn.ReLU()
+
+ def forward(self, x):
+ for i in range(len(self.layers) - 1):
+ x = self.relu(self.layers[i](x))
+ x = self.dropout(x)
+ return self.layers[-1](x)
+
+
+class Model(nn.Module):
+ """ MTAD_GAT model class.
+
+ :param n_features: Number of input features
+ :param window_size: Length of the input sequence
+ :param out_dim: Number of features to output
+ :param kernel_size: size of kernel to use in the 1-D convolution
+ :param feat_gat_embed_dim: embedding dimension (output dimension of linear transformation)
+ in feat-oriented GAT layer
+ :param time_gat_embed_dim: embedding dimension (output dimension of linear transformation)
+ in time-oriented GAT layer
+ :param use_gatv2: whether to use the modified attention mechanism of GATv2 instead of standard GAT
+ :param gru_n_layers: number of layers in the GRU layer
+ :param gru_hid_dim: hidden dimension in the GRU layer
+ :param forecast_n_layers: number of layers in the FC-based Forecasting Model
+ :param forecast_hid_dim: hidden dimension in the FC-based Forecasting Model
+ :param recon_n_layers: number of layers in the GRU-based Reconstruction Model
+ :param recon_hid_dim: hidden dimension in the GRU-based Reconstruction Model
+ :param dropout: dropout rate
+ :param alpha: negative slope used in the leaky rely activation function
+
+ """
+
+ def __init__(self, customs: dict, dataloader: tud.DataLoader = None):
+ super(Model, self).__init__()
+ n_features = dataloader.dataset.train_inputs.shape[-1]
+ window_size = int(customs["input_size"])
+ out_dim = n_features
+ kernel_size = 7
+ feat_gat_embed_dim = None
+ time_gat_embed_dim = None
+ use_gatv2 = True
+ gru_n_layers = 1
+ gru_hid_dim = 150
+ forecast_n_layers = 1
+ forecast_hid_dim = 150
+ recon_n_layers = 1
+ recon_hid_dim = 150
+ dropout = 0.2
+ alpha = 0.2
+ optimize = True
+
+ self.name = "MtadGatAtt"
+ self.optimize = optimize
+ use_softmax = not optimize
+
+ self.conv = ConvLayer(n_features, kernel_size)
+ self.feature_gat = FeatureAttentionLayer(
+ n_features, window_size, dropout, alpha, feat_gat_embed_dim, use_gatv2, use_softmax=use_softmax)
+ self.temporal_gat = TemporalAttentionLayer(n_features, window_size, dropout, alpha, time_gat_embed_dim,
+ use_gatv2, use_softmax=use_softmax)
+ self.forecasting_model = Forecasting_Model(
+ gru_hid_dim, forecast_hid_dim, out_dim, forecast_n_layers, dropout)
+ if optimize:
+ self.encode = AttentionBlock(3 * n_features, window_size)
+ self.encode_feature = nn.Linear(3 * n_features * window_size, gru_hid_dim)
+ self.decode_feature = nn.Linear(gru_hid_dim, n_features * window_size)
+ self.decode = AttentionBlock(n_features, window_size)
+ else:
+ self.gru = GRULayer(3 * n_features, gru_hid_dim, gru_n_layers, dropout)
+ self.recon_model = ReconstructionModel(window_size, gru_hid_dim, recon_hid_dim, out_dim, recon_n_layers,
+ dropout)
+
+ def forward(self, x):
+ x = self.conv(x)
+ h_feat = self.feature_gat(x)
+ h_temp = self.temporal_gat(x)
+ h_cat = torch.cat([x, h_feat, h_temp], dim=2) # (b, n, 3k)
+
+ if self.optimize:
+ h_end, _ = self.encode(h_cat, h_cat, h_cat, None)
+ h_end = self.encode_feature(h_end.reshape(h_end.size(0), -1))
+ else:
+ _, h_end = self.gru(h_cat)
+ h_end = h_end.view(x.shape[0], -1) # Hidden state for last timestamp
+
+ predictions = self.forecasting_model(h_end)
+
+ if self.optimize:
+ h_end = self.decode_feature(h_end)
+ h_end = h_end.reshape(x.shape[0], x.shape[1], x.shape[2])
+ recons, _ = self.decode(h_end, h_end, h_end, None)
+ else:
+ recons = self.recon_model(h_end)
+
+ return predictions, recons
+
+ def loss(self, x, y_true, epoch: int = None, device: str = "cpu"):
+ preds, recons = self.forward(x)
+
+ if preds.ndim == 3:
+ preds = preds.squeeze(1)
+ if y_true.ndim == 3:
+ y_true = y_true.squeeze(1)
+ forecast_criterion = nn.MSELoss()
+ recon_criterion = nn.MSELoss()
+
+ forecast_loss = torch.sqrt(forecast_criterion(y_true, preds))
+ recon_loss = torch.sqrt(recon_criterion(x, recons))
+
+ loss = forecast_loss + recon_loss
+ loss.backward()
+ return loss.item()
+
+ def detection(self, x, y_true, epoch: int = None, device: str = "cpu"):
+ preds, recons = self.forward(x)
+ score = F.pairwise_distance(recons.reshape(recons.size(0), -1), x.reshape(x.size(0), -1)) + F.pairwise_distance(y_true.reshape(y_true.size(0), -1), preds.reshape(preds.size(0), -1))
+ return score, None
+
+
+if __name__ == "__main__":
+ from tqdm import tqdm
+ import time
+ epoch = 10000
+ batch_size = 1
+ # device = 'cuda:1' if torch.cuda.is_available() else 'cpu'
+ device = 'cpu'
+ input_len_list = [30, 60, 90, 120, 150, 180, 210, 240, 270, 300]
+ for input_len in input_len_list:
+ model = Model(52, input_len, 52, optimize=False, device=device).to(device)
+ a = torch.Tensor(torch.ones((batch_size, input_len, 52))).to(device)
+ start = time.time()
+ for i in tqdm(range(epoch)):
+ model(a)
+ end = time.time()
+ speed1 = batch_size * epoch / (end - start)
+
+ model = Model(52, input_len, 52, optimize=True, device=device).to(device)
+ a = torch.Tensor(torch.ones((batch_size, input_len, 52))).to(device)
+ start = time.time()
+ for i in tqdm(range(epoch)):
+ model(a)
+ end = time.time()
+ speed2 = batch_size * epoch / (end - start)
+ print(input_len, (speed2 - speed1)/speed1, speed1, speed2)
+