summaryrefslogtreecommitdiff
path: root/evaluation/ftad.py
diff options
context:
space:
mode:
Diffstat (limited to 'evaluation/ftad.py')
-rw-r--r--evaluation/ftad.py156
1 files changed, 156 insertions, 0 deletions
diff --git a/evaluation/ftad.py b/evaluation/ftad.py
new file mode 100644
index 0000000..80e048f
--- /dev/null
+++ b/evaluation/ftad.py
@@ -0,0 +1,156 @@
+import math
+import numpy as np
+
+
+def evaluate(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float:
+ """
+ 基于异常段计算F值
+
+ :param y_true: 真实标签
+ :param y_pred: 检测标签
+ :param pos_label: 检测的目标数值,即指定哪个数为异常数值
+ :param max_segment: 异常段最大长度
+ :return: 段F值
+ """
+ p_tad = precision_tad(y_true=y_true, y_pred=y_pred, pos_label=pos_label, max_segment=max_segment)
+ r_tad = recall_tad(y_true=y_true, y_pred=y_pred, pos_label=pos_label, max_segment=max_segment)
+ score = 0
+ if p_tad and r_tad:
+ score = 2 * p_tad * r_tad / (p_tad + r_tad)
+ return score
+
+
+def recall_tad(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float:
+ """
+ 基于异常段计算召回率
+
+ :param y_true: 真实标签
+ :param y_pred: 检测标签
+ :param pos_label: 检测的目标数值,即指定哪个数为异常数值
+ :param max_segment: 异常段最大长度
+ :return: 段召回率
+ """
+ if max_segment == 0:
+ max_segment = get_max_segment(y_true=y_true, pos_label=pos_label)
+ score = tp_count(y_true, y_pred, pos_label=pos_label, max_segment=max_segment)
+ return score
+
+
+def precision_tad(y_true: [int], y_pred: [int], pos_label: int = 1, max_segment: int = 0) -> float:
+ """
+ 基于异常段计算精确率
+
+ :param y_true: 真实标签
+ :param y_pred: 检测标签
+ :param pos_label: 检测的目标数值,即指定哪个数为异常数值
+ :param max_segment: 异常段最大长度
+ :return: 段精确率
+ """
+ if max_segment == 0:
+ max_segment = get_max_segment(y_true=y_true, pos_label=pos_label)
+ score = tp_count(y_pred, y_true, pos_label=pos_label, max_segment=max_segment)
+ return score
+
+
+def tp_count(y_true: [int], y_pred: [int], max_segment: int = 0, pos_label: int = 1) -> float:
+ """
+ 计算段的评分,交换y_true和y_pred可以分别表示召回率与精确率。
+
+ :param y_true: 真实标签
+ :param y_pred: 检测标签
+ :param pos_label: 检测的目标数值,即指定哪个数为异常数值
+ :param max_segment: 异常段最大长度
+ :return: 分数
+ """
+ if len(y_true) != len(y_pred):
+ raise ValueError("y_true and y_pred should have the same length.")
+ neg_label = 1 - pos_label
+ position = 0
+ tp_list = []
+ if max_segment == 0:
+ raise ValueError("max segment length is 0")
+ while position < len(y_true):
+ if y_true[position] == neg_label:
+ position += 1
+ continue
+ elif y_true[position] == pos_label:
+ start = position
+ while position < len(y_true) and y_true[position] == pos_label and position - start < max_segment:
+ position += 1
+ end = position
+ true_window = [weight_line(i/(end-start)) for i in range(end-start)]
+ true_window = softmax(true_window)
+ pred_window = np.array(y_pred[start:end])
+ pred_window = np.where(pred_window == pos_label, true_window, 0)
+ tp_list.append(sum(pred_window))
+ else:
+ raise ValueError("label value must be 0 or 1")
+ score = sum(tp_list) / len(tp_list) if len(tp_list) > 0 else 0
+ return score
+
+
+def weight_line(position: float) -> float:
+ """
+ 按照权重曲线,给不同位置的点赋值
+
+ :param position: 点在段中的相对位置,取值范围[0,1]
+ :return: 权重值
+ """
+ if position < 0 or position > 1:
+ raise ValueError(f"point position in segment need between 0 and 1, {position} is error position")
+ sigma = 1 / (1 + math.exp(10*(position-0.5)))
+ return sigma
+
+
+def softmax(x: [float]) -> [float]:
+ """
+ softmax函数
+ :param x: 一个异常段的数据
+ :return: 经过softmax的一段数据
+ """
+ ret = np.exp(x)/np.sum(np.exp(x), axis=0)
+ return ret.tolist()
+
+
+def get_max_segment(y_true: [int], pos_label: int = 1) -> int:
+ """
+ 获取最大的异常段的长度
+ :param y_true: 真实标签
+ :param pos_label: 异常标签的取值
+ :return: 最大长度
+ """
+ max_num, i = 0, 0
+ neg_label = 1 - pos_label
+ while i < len(y_true):
+ if y_true[i] == neg_label:
+ i += 1
+ continue
+ elif y_true[i] == pos_label:
+ start = i
+ while i < len(y_true) and y_true[i] == pos_label:
+ i += 1
+ end = i
+ max_num = max(max_num, end-start)
+ else:
+ raise ValueError("label value must be 0 or 1")
+ return max_num
+
+
+if __name__ == "__main__":
+
+ # y_true = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
+ # 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ # y_pred = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
+ # 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
+ import pandas as pd
+ data = pd.read_csv("../records/2023-04-10_10-30-27/detection_result/MtadGatAtt_SWAT.csv")
+ y_true = data["true"].tolist()
+ y_pred = data["ftad"].tolist()
+
+ print(evaluate(y_true, y_pred))
+ # print(precision_tad(y_true, y_pred))
+ # print(recall_tad(y_true, y_pred))
+ # from sklearn.metrics import f1_score, precision_score, recall_score
+ # print(f1_score(y_true, y_pred))
+ # print(precision_score(y_true, y_pred))
+ # print(recall_score(y_true, y_pred))