summaryrefslogtreecommitdiff
path: root/preprocess/standardization.py
diff options
context:
space:
mode:
authorZHENG Yanqin <[email protected]>2023-05-25 07:37:53 +0000
committerZHENG Yanqin <[email protected]>2023-05-25 07:37:53 +0000
commite9896bd62bb29da00ec00a121374167ad91bfe47 (patch)
treed94845574c8ef7473d0204d28b4efd4038035463 /preprocess/standardization.py
parentfad9aa875c84b38cbb5a6010e104922b1eea7291 (diff)
parent4c5734c624705449c6b21c4b2bc5554e7259fdba (diff)
Merge branch 'master' into 'main'HEADmain
readme See merge request zyq/time_series_anomaly_detection!1
Diffstat (limited to 'preprocess/standardization.py')
-rw-r--r--preprocess/standardization.py119
1 files changed, 119 insertions, 0 deletions
diff --git a/preprocess/standardization.py b/preprocess/standardization.py
new file mode 100644
index 0000000..9b8b2be
--- /dev/null
+++ b/preprocess/standardization.py
@@ -0,0 +1,119 @@
+from torch.utils.data import Dataset
+from torch import float32, Tensor
+from numpy import array, where
+
+
+class MyDataset(Dataset):
+ def __init__(self, name: str, train_path: str = None, test_path: str = None, input_size: int = 1,
+ output_size: int = 1, step: int = 1, mode: str = 'train', time_index: bool = True,
+ del_column_name: bool = True):
+ """
+ 可以将csv文件批量转成tensor
+ :param name: 数据集名称。
+ :param train_path: 训练数据集路径。
+ :param test_path: 测试数据集路径。
+ :param input_size: 输入数据长度。
+ :param output_size: 输出数据长度。
+ :param step: 截取数据的窗口移动间隔。
+ :param mode: train或者test,用于指示使用训练集数据还是测试集数据。
+ :param time_index: True为第一列是时间戳,False为不。
+ :param del_column_name: 文件中第一行为列名时,使用True。
+ """
+ self.name = name
+ self.input_size = input_size
+ self.output_size = output_size
+ self.del_column_name = del_column_name
+ self.step = step
+ self.mode = mode
+ self.time_index = time_index
+ self.train_inputs, self.train_labels, self.train_outputs, self.test_inputs, self.test_labels, self.test_outputs\
+ = self.parse_data(train_path, test_path)
+ self.train_inputs = Tensor(self.train_inputs).to(float32) if self.train_inputs is not None else None
+ self.train_labels = Tensor(self.train_labels).to(float32) if self.train_labels is not None else None
+ self.train_outputs = Tensor(self.train_outputs).to(float32) if self.train_outputs is not None else None
+ self.test_inputs = Tensor(self.test_inputs).to(float32) if self.test_inputs is not None else None
+ self.test_labels = Tensor(self.test_labels).to(float32) if self.test_labels is not None else None
+ self.test_outputs = Tensor(self.test_outputs).to(float32) if self.test_outputs is not None else None
+
+ def parse_data(self, train_path: str = None, test_path: str = None):
+ if train_path is None and test_path is None:
+ raise ValueError("train_path is None and test_path is None.")
+
+ mean = None
+ deviation = None
+ train_data_input, train_label, train_data_output = None, None, None
+ test_data_input, test_label, test_data_output = None, None, None
+
+ # 读取训练集数据
+ if train_path:
+ train_data = []
+ train_label = []
+ with open(train_path, 'r', encoding='utf8') as f:
+ if self.del_column_name is True:
+ data = f.readlines()[1:]
+ else:
+ data = f.readlines()
+ train_data.extend([list(map(float, line.strip().split(','))) for line in data])
+ train_label.extend([0 for _ in data])
+ train_np = array(train_data)
+ if self.time_index:
+ train_np[:, 0] = train_np[:, 0] % 86400
+ mean = train_np.mean(axis=0) # 计算平均数
+ deviation = train_np.std(axis=0) # 计算标准差
+ deviation = where(deviation != 0, deviation, 1)
+ train_np = (train_np - mean) / deviation # 标准化
+ train_data = train_np.tolist()
+ train_data_input, train_data_output, train_label = self.cut_data(train_data, train_label)
+
+ # 读取测试集数据
+ if test_path:
+ test_data = []
+ test_label = []
+ with open(test_path, 'r', encoding='utf8') as f:
+ if self.del_column_name is True:
+ data = f.readlines()[1:]
+ else:
+ data = f.readlines()
+ test_data.extend([list(map(float, line.strip().split(',')))[:-1] for line in data])
+ test_label.extend([int(line.strip().split(',')[-1]) for line in data])
+ test_np = array(test_data)
+ if self.time_index:
+ test_np[:, 0] = test_np[:, 0] % 86400
+ # mean = test_np.mean(axis=0) # 计算平均数
+ # deviation = test_np.std(axis=0) # 计算标准差
+ # deviation = where(deviation != 0, deviation, 1)
+ test_np = (test_np - mean) / deviation # 标准化
+ test_data = test_np.tolist()
+ # 自动判断是否需要反转标签。异常标签统一认为是1,当异常标签超过一半时,需反转标签
+ if sum(test_label) > 0.5*len(test_label):
+ test_label = (1-array(test_label)).tolist()
+ test_data_input, test_data_output, test_label = self.cut_data(test_data, test_label)
+
+ return train_data_input, train_label, train_data_output, test_data_input, test_label, test_data_output
+
+ def cut_data(self, data: [[float]], label: [int]):
+ n = 0
+ input_data, output_data, anomaly_label = [], [], []
+ while n + self.input_size + self.output_size <= len(data):
+ input_data.append(data[n: n + self.input_size])
+ output_data.append(data[n + self.input_size: n + self.input_size + self.output_size])
+ anomaly_label.append([max(label[n + self.input_size: n + self.input_size + self.output_size])])
+ n = n + self.step
+ return input_data.copy(), output_data.copy(), anomaly_label.copy()
+
+ def __len__(self):
+ if self.mode == 'train':
+ return self.train_inputs.shape[0]
+ elif self.mode == 'test':
+ return self.test_inputs.shape[0]
+
+ def __getitem__(self, idx):
+ if self.mode == 'train':
+ return self.train_inputs[idx], self.train_labels[idx], self.train_outputs[idx]
+ elif self.mode == 'test':
+ return self.test_inputs[idx], self.test_labels[idx], self.test_outputs[idx]
+
+
+if __name__ == "__main__":
+ app = MyDataset('../dataset/SWAT/train.csv', test_path='../dataset/SWAT/test.csv', input_size=3)
+ print(app)