1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
|
/*
* Copyright (c)2019 ZeroTier, Inc.
*
* Use of this software is governed by the Business Source License included
* in the LICENSE.TXT file in the project's root directory.
*
* Change Date: 2025-01-01
*
* On the date above, in accordance with the Business Source License, use
* of this software will be governed by version 2.0 of the Apache License.
*/
/****/
#ifndef ZT_UTILS_HPP
#define ZT_UTILS_HPP
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <time.h>
#include <string>
#include <stdexcept>
#include <vector>
#include <map>
#if defined(__FreeBSD__)
#include <sys/endian.h>
#endif
#include "Constants.hpp"
#if __BYTE_ORDER == __LITTLE_ENDIAN
#define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)((uint16_t)((uint16_t)(x) << 8U) | (uint16_t)((uint16_t)(x) >> 8U)))
#define ZT_CONST_TO_BE_UINT64(x) ( \
(((uint64_t)(x) & 0x00000000000000ffULL) << 56U) | \
(((uint64_t)(x) & 0x000000000000ff00ULL) << 40U) | \
(((uint64_t)(x) & 0x0000000000ff0000ULL) << 24U) | \
(((uint64_t)(x) & 0x00000000ff000000ULL) << 8U) | \
(((uint64_t)(x) & 0x000000ff00000000ULL) >> 8U) | \
(((uint64_t)(x) & 0x0000ff0000000000ULL) >> 24U) | \
(((uint64_t)(x) & 0x00ff000000000000ULL) >> 40U) | \
(((uint64_t)(x) & 0xff00000000000000ULL) >> 56U))
#else
#define ZT_CONST_TO_BE_UINT16(x) ((uint16_t)(x))
#define ZT_CONST_TO_BE_UINT64(x) ((uint64_t)(x))
#endif
#define ZT_ROR64(x, r) (((x) >> (r)) | ((x) << (64 - (r))))
#define ZT_ROL64(x, r) (((x) << (r)) | ((x) >> (64 - (r))))
#define ZT_ROR32(x, r) (((x) >> (r)) | ((x) << (32 - (r))))
#define ZT_ROL32(x, r) (((x) << (r)) | ((x) >> (32 - (r))))
namespace ZeroTier {
/**
* Miscellaneous utility functions and global constants
*/
class Utils
{
public:
static const uint64_t ZERO256[4];
#ifdef ZT_ARCH_ARM_HAS_NEON
struct ARMCapabilities
{
ARMCapabilities() noexcept;
bool aes;
bool crc32;
bool pmull;
bool sha1;
bool sha2;
};
static const ARMCapabilities ARMCAP;
#endif
#ifdef ZT_ARCH_X64
struct CPUIDRegisters
{
CPUIDRegisters() noexcept;
bool rdrand;
bool aes;
bool avx;
bool vaes; // implies AVX
bool vpclmulqdq; // implies AVX
bool avx2;
bool avx512f;
bool sha;
bool fsrm;
};
static const CPUIDRegisters CPUID;
#endif
/**
* Compute the log2 (most significant bit set) of a 32-bit integer
*
* @param v Integer to compute
* @return log2 or 0 if v is 0
*/
static inline unsigned int log2(uint32_t v)
{
uint32_t r = (v > 0xffff) << 4;
v >>= r;
uint32_t shift = (v > 0xff) << 3;
v >>= shift;
r |= shift;
shift = (v > 0xf) << 2;
v >>= shift;
r |= shift;
shift = (v > 0x3) << 1;
v >>= shift;
r |= shift;
r |= (v >> 1);
return (unsigned int)r;
}
/**
* Perform a time-invariant binary comparison
*
* @param a First binary string
* @param b Second binary string
* @param len Length of strings
* @return True if strings are equal
*/
static inline bool secureEq(const void *a,const void *b,unsigned int len)
{
uint8_t diff = 0;
for(unsigned int i=0;i<len;++i) {
diff |= ( (reinterpret_cast<const uint8_t *>(a))[i] ^ (reinterpret_cast<const uint8_t *>(b))[i] );
}
return (diff == 0);
}
/**
* Securely zero memory, avoiding compiler optimizations and such
*/
static void burn(void *ptr,unsigned int len);
/**
* @param n Number to convert
* @param s Buffer, at least 24 bytes in size
* @return String containing 'n' in base 10 form
*/
static char *decimal(unsigned long n,char s[24]);
static inline char *hex(uint64_t i,char s[17])
{
s[0] = HEXCHARS[(i >> 60) & 0xf];
s[1] = HEXCHARS[(i >> 56) & 0xf];
s[2] = HEXCHARS[(i >> 52) & 0xf];
s[3] = HEXCHARS[(i >> 48) & 0xf];
s[4] = HEXCHARS[(i >> 44) & 0xf];
s[5] = HEXCHARS[(i >> 40) & 0xf];
s[6] = HEXCHARS[(i >> 36) & 0xf];
s[7] = HEXCHARS[(i >> 32) & 0xf];
s[8] = HEXCHARS[(i >> 28) & 0xf];
s[9] = HEXCHARS[(i >> 24) & 0xf];
s[10] = HEXCHARS[(i >> 20) & 0xf];
s[11] = HEXCHARS[(i >> 16) & 0xf];
s[12] = HEXCHARS[(i >> 12) & 0xf];
s[13] = HEXCHARS[(i >> 8) & 0xf];
s[14] = HEXCHARS[(i >> 4) & 0xf];
s[15] = HEXCHARS[i & 0xf];
s[16] = (char)0;
return s;
}
static inline char *hex10(uint64_t i,char s[11])
{
s[0] = HEXCHARS[(i >> 36) & 0xf];
s[1] = HEXCHARS[(i >> 32) & 0xf];
s[2] = HEXCHARS[(i >> 28) & 0xf];
s[3] = HEXCHARS[(i >> 24) & 0xf];
s[4] = HEXCHARS[(i >> 20) & 0xf];
s[5] = HEXCHARS[(i >> 16) & 0xf];
s[6] = HEXCHARS[(i >> 12) & 0xf];
s[7] = HEXCHARS[(i >> 8) & 0xf];
s[8] = HEXCHARS[(i >> 4) & 0xf];
s[9] = HEXCHARS[i & 0xf];
s[10] = (char)0;
return s;
}
static inline char *hex(uint32_t i,char s[9])
{
s[0] = HEXCHARS[(i >> 28) & 0xf];
s[1] = HEXCHARS[(i >> 24) & 0xf];
s[2] = HEXCHARS[(i >> 20) & 0xf];
s[3] = HEXCHARS[(i >> 16) & 0xf];
s[4] = HEXCHARS[(i >> 12) & 0xf];
s[5] = HEXCHARS[(i >> 8) & 0xf];
s[6] = HEXCHARS[(i >> 4) & 0xf];
s[7] = HEXCHARS[i & 0xf];
s[8] = (char)0;
return s;
}
static inline char *hex(uint16_t i,char s[5])
{
s[0] = HEXCHARS[(i >> 12) & 0xf];
s[1] = HEXCHARS[(i >> 8) & 0xf];
s[2] = HEXCHARS[(i >> 4) & 0xf];
s[3] = HEXCHARS[i & 0xf];
s[4] = (char)0;
return s;
}
static inline char *hex(uint8_t i,char s[3])
{
s[0] = HEXCHARS[(i >> 4) & 0xf];
s[1] = HEXCHARS[i & 0xf];
s[2] = (char)0;
return s;
}
static inline char *hex(const void *d,unsigned int l,char *s)
{
char *const save = s;
for(unsigned int i=0;i<l;++i) {
const unsigned int b = reinterpret_cast<const uint8_t *>(d)[i];
*(s++) = HEXCHARS[b >> 4];
*(s++) = HEXCHARS[b & 0xf];
}
*s = (char)0;
return save;
}
static inline unsigned int unhex(const char *h,void *buf,unsigned int buflen)
{
unsigned int l = 0;
while (l < buflen) {
uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) {
break;
}
uint8_t c = 0;
if ((hc >= 48)&&(hc <= 57)) { // 0..9
c = hc - 48;
} else if ((hc >= 97)&&(hc <= 102)) { // a..f
c = hc - 87;
} else if ((hc >= 65)&&(hc <= 70)) { // A..F
c = hc - 55;
}
hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) {
break;
}
c <<= 4;
if ((hc >= 48)&&(hc <= 57)) {
c |= hc - 48;
} else if ((hc >= 97)&&(hc <= 102)) {
c |= hc - 87;
} else if ((hc >= 65)&&(hc <= 70)) {
c |= hc - 55;
}
reinterpret_cast<uint8_t *>(buf)[l++] = c;
}
return l;
}
static inline unsigned int unhex(const char *h,unsigned int hlen,void *buf,unsigned int buflen)
{
unsigned int l = 0;
const char *hend = h + hlen;
while (l < buflen) {
if (h == hend) {
break;
}
uint8_t hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) {
break;
}
uint8_t c = 0;
if ((hc >= 48)&&(hc <= 57)) {
c = hc - 48;
} else if ((hc >= 97)&&(hc <= 102)) {
c = hc - 87;
} else if ((hc >= 65)&&(hc <= 70)) {
c = hc - 55;
}
if (h == hend) {
break;
}
hc = *(reinterpret_cast<const uint8_t *>(h++));
if (!hc) {
break;
}
c <<= 4;
if ((hc >= 48)&&(hc <= 57)) {
c |= hc - 48;
} else if ((hc >= 97)&&(hc <= 102)) {
c |= hc - 87;
} else if ((hc >= 65)&&(hc <= 70)) {
c |= hc - 55;
}
reinterpret_cast<uint8_t *>(buf)[l++] = c;
}
return l;
}
static inline float normalize(float value, float bigMin, float bigMax, float targetMin, float targetMax)
{
float bigSpan = bigMax - bigMin;
float smallSpan = targetMax - targetMin;
float valueScaled = (value - bigMin) / bigSpan;
return targetMin + valueScaled * smallSpan;
}
/**
* Generate secure random bytes
*
* This will try to use whatever OS sources of entropy are available. It's
* guarded by an internal mutex so it's thread-safe.
*
* @param buf Buffer to fill
* @param bytes Number of random bytes to generate
*/
static void getSecureRandom(void *buf,unsigned int bytes);
/**
* Tokenize a string (alias for strtok_r or strtok_s depending on platform)
*
* @param str String to split
* @param delim Delimiters
* @param saveptr Pointer to a char * for temporary reentrant storage
*/
static inline char *stok(char *str,const char *delim,char **saveptr)
{
#ifdef __WINDOWS__
return strtok_s(str,delim,saveptr);
#else
return strtok_r(str,delim,saveptr);
#endif
}
static inline unsigned int strToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,10); }
static inline int strToInt(const char *s) { return (int)strtol(s,(char **)0,10); }
static inline unsigned long strToULong(const char *s) { return strtoul(s,(char **)0,10); }
static inline long strToLong(const char *s) { return strtol(s,(char **)0,10); }
static inline double strToDouble(const char *s) { return strtod(s,NULL); }
static inline unsigned long long strToU64(const char *s)
{
#ifdef __WINDOWS__
return (unsigned long long)_strtoui64(s,(char **)0,10);
#else
return strtoull(s,(char **)0,10);
#endif
}
static inline long long strTo64(const char *s)
{
#ifdef __WINDOWS__
return (long long)_strtoi64(s,(char **)0,10);
#else
return strtoll(s,(char **)0,10);
#endif
}
static inline unsigned int hexStrToUInt(const char *s) { return (unsigned int)strtoul(s,(char **)0,16); }
static inline int hexStrToInt(const char *s) { return (int)strtol(s,(char **)0,16); }
static inline unsigned long hexStrToULong(const char *s) { return strtoul(s,(char **)0,16); }
static inline long hexStrToLong(const char *s) { return strtol(s,(char **)0,16); }
static inline unsigned long long hexStrToU64(const char *s)
{
#ifdef __WINDOWS__
return (unsigned long long)_strtoui64(s,(char **)0,16);
#else
return strtoull(s,(char **)0,16);
#endif
}
static inline long long hexStrTo64(const char *s)
{
#ifdef __WINDOWS__
return (long long)_strtoi64(s,(char **)0,16);
#else
return strtoll(s,(char **)0,16);
#endif
}
/**
* Perform a safe C string copy, ALWAYS null-terminating the result
*
* This will never ever EVER result in dest[] not being null-terminated
* regardless of any input parameter (other than len==0 which is invalid).
*
* @param dest Destination buffer (must not be NULL)
* @param len Length of dest[] (if zero, false is returned and nothing happens)
* @param src Source string (if NULL, dest will receive a zero-length string and true is returned)
* @return True on success, false on overflow (buffer will still be 0-terminated)
*/
static inline bool scopy(char *dest,unsigned int len,const char *src)
{
if (!len) {
return false; // sanity check
}
if (!src) {
*dest = (char)0;
return true;
}
char *end = dest + len;
while ((*dest++ = *src++)) {
if (dest == end) {
*(--dest) = (char)0;
return false;
}
}
return true;
}
/**
* Count the number of bits set in an integer
*
* @param v 32-bit integer
* @return Number of bits set in this integer (0-32)
*/
static inline uint32_t countBits(uint32_t v)
{
v = v - ((v >> 1) & (uint32_t)0x55555555);
v = (v & (uint32_t)0x33333333) + ((v >> 2) & (uint32_t)0x33333333);
return ((((v + (v >> 4)) & (uint32_t)0xF0F0F0F) * (uint32_t)0x1010101) >> 24);
}
/**
* Count the number of bits set in an integer
*
* @param v 64-bit integer
* @return Number of bits set in this integer (0-64)
*/
static inline uint64_t countBits(uint64_t v)
{
v = v - ((v >> 1) & (uint64_t)~(uint64_t)0/3);
v = (v & (uint64_t)~(uint64_t)0/15*3) + ((v >> 2) & (uint64_t)~(uint64_t)0/15*3);
v = (v + (v >> 4)) & (uint64_t)~(uint64_t)0/255*15;
return (uint64_t)(v * ((uint64_t)~(uint64_t)0/255)) >> 56;
}
/**
* Check if a memory buffer is all-zero
*
* @param p Memory to scan
* @param len Length of memory
* @return True if memory is all zero
*/
static inline bool isZero(const void *p,unsigned int len)
{
for(unsigned int i=0;i<len;++i) {
if (((const unsigned char *)p)[i]) {
return false;
}
}
return true;
}
/**
* Unconditionally swap bytes regardless of host byte order
*
* @param n Integer to swap
* @return Integer with bytes reversed
*/
static ZT_INLINE uint64_t swapBytes(const uint64_t n) noexcept
{
#ifdef __GNUC__
return __builtin_bswap64(n);
#else
#ifdef _MSC_VER
return (uint64_t)_byteswap_uint64((unsigned __int64)n);
#else
return (
((n & 0x00000000000000ffULL) << 56) |
((n & 0x000000000000ff00ULL) << 40) |
((n & 0x0000000000ff0000ULL) << 24) |
((n & 0x00000000ff000000ULL) << 8) |
((n & 0x000000ff00000000ULL) >> 8) |
((n & 0x0000ff0000000000ULL) >> 24) |
((n & 0x00ff000000000000ULL) >> 40) |
((n & 0xff00000000000000ULL) >> 56)
);
#endif
#endif
}
/**
* Unconditionally swap bytes regardless of host byte order
*
* @param n Integer to swap
* @return Integer with bytes reversed
*/
static ZT_INLINE uint32_t swapBytes(const uint32_t n) noexcept
{
#if defined(__GNUC__)
return __builtin_bswap32(n);
#else
#ifdef _MSC_VER
return (uint32_t)_byteswap_ulong((unsigned long)n);
#else
return htonl(n);
#endif
#endif
}
/**
* Unconditionally swap bytes regardless of host byte order
*
* @param n Integer to swap
* @return Integer with bytes reversed
*/
static ZT_INLINE uint16_t swapBytes(const uint16_t n) noexcept
{
#if defined(__GNUC__)
return __builtin_bswap16(n);
#else
#ifdef _MSC_VER
return (uint16_t)_byteswap_ushort((unsigned short)n);
#else
return htons(n);
#endif
#endif
}
// These are helper adapters to load and swap integer types special cased by size
// to work with all typedef'd variants, signed/unsigned, etc.
template< typename I, unsigned int S >
class _swap_bytes_bysize;
template< typename I >
class _swap_bytes_bysize< I, 1 >
{
public:
static ZT_INLINE I s(const I n) noexcept
{ return n; }
};
template< typename I >
class _swap_bytes_bysize< I, 2 >
{
public:
static ZT_INLINE I s(const I n) noexcept
{ return (I)swapBytes((uint16_t)n); }
};
template< typename I >
class _swap_bytes_bysize< I, 4 >
{
public:
static ZT_INLINE I s(const I n) noexcept
{ return (I)swapBytes((uint32_t)n); }
};
template< typename I >
class _swap_bytes_bysize< I, 8 >
{
public:
static ZT_INLINE I s(const I n) noexcept
{ return (I)swapBytes((uint64_t)n); }
};
template< typename I, unsigned int S >
class _load_be_bysize;
template< typename I >
class _load_be_bysize< I, 1 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return p[0]; }
};
template< typename I >
class _load_be_bysize< I, 2 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return (I)(((unsigned int)p[0] << 8U) | (unsigned int)p[1]); }
};
template< typename I >
class _load_be_bysize< I, 4 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return (I)(((uint32_t)p[0] << 24U) | ((uint32_t)p[1] << 16U) | ((uint32_t)p[2] << 8U) | (uint32_t)p[3]); }
};
template< typename I >
class _load_be_bysize< I, 8 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return (I)(((uint64_t)p[0] << 56U) | ((uint64_t)p[1] << 48U) | ((uint64_t)p[2] << 40U) | ((uint64_t)p[3] << 32U) | ((uint64_t)p[4] << 24U) | ((uint64_t)p[5] << 16U) | ((uint64_t)p[6] << 8U) | (uint64_t)p[7]); }
};
template< typename I, unsigned int S >
class _load_le_bysize;
template< typename I >
class _load_le_bysize< I, 1 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return p[0]; }
};
template< typename I >
class _load_le_bysize< I, 2 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return (I)((unsigned int)p[0] | ((unsigned int)p[1] << 8U)); }
};
template< typename I >
class _load_le_bysize< I, 4 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return (I)((uint32_t)p[0] | ((uint32_t)p[1] << 8U) | ((uint32_t)p[2] << 16U) | ((uint32_t)p[3] << 24U)); }
};
template< typename I >
class _load_le_bysize< I, 8 >
{
public:
static ZT_INLINE I l(const uint8_t *const p) noexcept
{ return (I)((uint64_t)p[0] | ((uint64_t)p[1] << 8U) | ((uint64_t)p[2] << 16U) | ((uint64_t)p[3] << 24U) | ((uint64_t)p[4] << 32U) | ((uint64_t)p[5] << 40U) | ((uint64_t)p[6] << 48U) | ((uint64_t)p[7]) << 56U); }
};
/**
* Convert any signed or unsigned integer type to big-endian ("network") byte order
*
* @tparam I Integer type (usually inferred)
* @param n Value to convert
* @return Value in big-endian order
*/
template< typename I >
static ZT_INLINE I hton(const I n) noexcept
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
return _swap_bytes_bysize< I, sizeof(I) >::s(n);
#else
return n;
#endif
}
/**
* Convert any signed or unsigned integer type to host byte order from big-endian ("network") byte order
*
* @tparam I Integer type (usually inferred)
* @param n Value to convert
* @return Value in host byte order
*/
template< typename I >
static ZT_INLINE I ntoh(const I n) noexcept
{
#if __BYTE_ORDER == __LITTLE_ENDIAN
return _swap_bytes_bysize< I, sizeof(I) >::s(n);
#else
return n;
#endif
}
/**
* Copy bits from memory into an integer type without modifying their order
*
* @tparam I Type to load
* @param p Byte stream, must be at least sizeof(I) in size
* @return Loaded raw integer
*/
template< typename I >
static ZT_INLINE I loadMachineEndian(const void *const p) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
I tmp;
for(int i=0;i<(int)sizeof(I);++i) {
reinterpret_cast<uint8_t *>(&tmp)[i] = reinterpret_cast<const uint8_t *>(p)[i];
}
return tmp;
#else
return *reinterpret_cast<const I *>(p);
#endif
}
/**
* Copy bits from memory into an integer type without modifying their order
*
* @tparam I Type to store
* @param p Byte array (must be at least sizeof(I))
* @param i Integer to store
*/
template< typename I >
static ZT_INLINE void storeMachineEndian(void *const p, const I i) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
for(unsigned int k=0;k<sizeof(I);++k) {
reinterpret_cast<uint8_t *>(p)[k] = reinterpret_cast<const uint8_t *>(&i)[k];
}
#else
*reinterpret_cast<I *>(p) = i;
#endif
}
/**
* Decode a big-endian value from a byte stream
*
* @tparam I Type to decode (should be unsigned e.g. uint32_t or uint64_t)
* @param p Byte stream, must be at least sizeof(I) in size
* @return Decoded integer
*/
template< typename I >
static ZT_INLINE I loadBigEndian(const void *const p) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
return _load_be_bysize<I,sizeof(I)>::l(reinterpret_cast<const uint8_t *>(p));
#else
return ntoh(*reinterpret_cast<const I *>(p));
#endif
}
/**
* Save an integer in big-endian format
*
* @tparam I Integer type to store (usually inferred)
* @param p Byte stream to write (must be at least sizeof(I))
* #param i Integer to write
*/
template< typename I >
static ZT_INLINE void storeBigEndian(void *const p, I i) noexcept
{
#ifdef ZT_NO_UNALIGNED_ACCESS
storeMachineEndian(p,hton(i));
#else
*reinterpret_cast<I *>(p) = hton(i);
#endif
}
/**
* Decode a little-endian value from a byte stream
*
* @tparam I Type to decode
* @param p Byte stream, must be at least sizeof(I) in size
* @return Decoded integer
*/
template< typename I >
static ZT_INLINE I loadLittleEndian(const void *const p) noexcept
{
#if __BYTE_ORDER == __BIG_ENDIAN || defined(ZT_NO_UNALIGNED_ACCESS)
return _load_le_bysize<I,sizeof(I)>::l(reinterpret_cast<const uint8_t *>(p));
#else
return *reinterpret_cast<const I *>(p);
#endif
}
/**
* Save an integer in little-endian format
*
* @tparam I Integer type to store (usually inferred)
* @param p Byte stream to write (must be at least sizeof(I))
* #param i Integer to write
*/
template< typename I >
static ZT_INLINE void storeLittleEndian(void *const p, const I i) noexcept
{
#if __BYTE_ORDER == __BIG_ENDIAN
storeMachineEndian(p,_swap_bytes_bysize<I,sizeof(I)>::s(i));
#else
#ifdef ZT_NO_UNALIGNED_ACCESS
storeMachineEndian(p,i);
#else
*reinterpret_cast<I *>(p) = i;
#endif
#endif
}
/**
* Copy memory block whose size is known at compile time.
*
* @tparam L Size of memory
* @param dest Destination memory
* @param src Source memory
*/
template< unsigned long L >
static ZT_INLINE void copy(void *dest, const void *src) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
uintptr_t l = L;
__asm__ __volatile__ ("cld ; rep movsb" : "+c"(l), "+S"(src), "+D"(dest) :: "memory");
#else
memcpy(dest, src, L);
#endif
}
/**
* Copy memory block whose size is known at run time
*
* @param dest Destination memory
* @param src Source memory
* @param len Bytes to copy
*/
static ZT_INLINE void copy(void *dest, const void *src, unsigned long len) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
__asm__ __volatile__ ("cld ; rep movsb" : "+c"(len), "+S"(src), "+D"(dest) :: "memory");
#else
memcpy(dest, src, len);
#endif
}
/**
* Zero memory block whose size is known at compile time
*
* @tparam L Size in bytes
* @param dest Memory to zero
*/
template< unsigned long L >
static ZT_INLINE void zero(void *dest) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
uintptr_t l = L;
__asm__ __volatile__ ("cld ; rep stosb" :"+c" (l), "+D" (dest) : "a" (0) : "memory");
#else
memset(dest, 0, L);
#endif
}
/**
* Zero memory block whose size is known at run time
*
* @param dest Memory to zero
* @param len Size in bytes
*/
static ZT_INLINE void zero(void *dest, unsigned long len) noexcept
{
#if defined(ZT_ARCH_X64) && defined(__GNUC__)
__asm__ __volatile__ ("cld ; rep stosb" :"+c" (len), "+D" (dest) : "a" (0) : "memory");
#else
memset(dest, 0, len);
#endif
}
/**
* Hexadecimal characters 0-f
*/
static const char HEXCHARS[16];
};
} // namespace ZeroTier
#endif
|