1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
use std::{cell::UnsafeCell, io};
use monoio::{
buf::IoBufMut,
io::{AsyncReadRent, AsyncWriteRent, AsyncWriteRentExt, Split},
BufResult,
};
use crate::{box_future::MaybeArmedBoxFuture, buf::Buf};
/// A wrapper for stream with ownership that impl AsyncReadRent and AsyncWriteRent.
/// The Wrapper will impl tokio AsyncRead and AsyncWrite.
/// Mainly used for compatible.
pub struct StreamWrapper<T> {
stream: UnsafeCell<T>,
read_buf: Option<Buf>,
write_buf: Option<Buf>,
read_fut: MaybeArmedBoxFuture<BufResult<usize, Buf>>,
write_fut: MaybeArmedBoxFuture<BufResult<usize, Buf>>,
flush_fut: MaybeArmedBoxFuture<io::Result<()>>,
shutdown_fut: MaybeArmedBoxFuture<io::Result<()>>,
}
unsafe impl<T: Split> Split for StreamWrapper<T> {}
impl<T> StreamWrapper<T> {
/// Consume self and get inner T.
pub fn into_inner(self) -> T {
self.stream.into_inner()
}
/// Creates a new `TcpStreamCompat` from a monoio `TcpStream` or `UnixStream`.
pub fn new_with_buffer_size(stream: T, read_buffer: usize, write_buffer: usize) -> Self {
let r_buf = Buf::new(read_buffer);
let w_buf = Buf::new(write_buffer);
Self {
stream: UnsafeCell::new(stream),
read_buf: Some(r_buf),
write_buf: Some(w_buf),
read_fut: Default::default(),
write_fut: Default::default(),
flush_fut: Default::default(),
shutdown_fut: Default::default(),
}
}
/// Creates a new `TcpStreamCompat` from a monoio `TcpStream` or `UnixStream`.
pub fn new(stream: T) -> Self {
const DEFAULT_READ_BUFFER: usize = 8 * 1024;
const DEFAULT_WRITE_BUFFER: usize = 8 * 1024;
Self::new_with_buffer_size(stream, DEFAULT_READ_BUFFER, DEFAULT_WRITE_BUFFER)
}
}
impl<T: AsyncReadRent + Unpin + 'static> tokio::io::AsyncRead for StreamWrapper<T> {
fn poll_read(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &mut tokio::io::ReadBuf<'_>,
) -> std::task::Poll<std::io::Result<()>> {
let this = self.get_mut();
loop {
// if the future not armed, this means maybe buffer has data.
if !this.read_fut.armed() {
// if there is some data left in our buf, copy it and return.
let read_buf_mut = unsafe { this.read_buf.as_mut().unwrap_unchecked() };
if !read_buf_mut.is_empty() {
// copy directly from inner buf to buf
let our_buf = read_buf_mut.buf_to_read(buf.remaining());
let our_buf_len = our_buf.len();
buf.put_slice(our_buf);
unsafe { read_buf_mut.advance_offset(our_buf_len) };
return std::task::Poll::Ready(Ok(()));
}
// there is no data in buffer. we will construct the future
let buf = unsafe { this.read_buf.take().unwrap_unchecked() };
// we must leak the stream
let stream = unsafe { &mut *this.stream.get() };
this.read_fut.arm_future(AsyncReadRent::read(stream, buf));
}
// the future slot is armed now. we will poll it.
let (ret, buf) = match this.read_fut.poll(cx) {
std::task::Poll::Ready(out) => out,
std::task::Poll::Pending => {
return std::task::Poll::Pending;
}
};
this.read_buf = Some(buf);
if ret? == 0 {
// on eof, return directly; otherwise goto next loop.
return std::task::Poll::Ready(Ok(()));
}
}
}
}
impl<T: AsyncWriteRent + Unpin + 'static> tokio::io::AsyncWrite for StreamWrapper<T> {
fn poll_write(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
buf: &[u8],
) -> std::task::Poll<Result<usize, std::io::Error>> {
if buf.is_empty() {
return std::task::Poll::Ready(Ok(0));
}
let this = self.get_mut();
// if there is some future armed, we must poll it until ready.
// if it returns error, we will return it;
// if it returns ok, we ignore it.
if this.write_fut.armed() {
let (ret, mut owned_buf) = match this.write_fut.poll(cx) {
std::task::Poll::Ready(r) => r,
std::task::Poll::Pending => {
return std::task::Poll::Pending;
}
};
// clear the buffer
unsafe { owned_buf.set_init(0) };
this.write_buf = Some(owned_buf);
if ret.is_err() {
return std::task::Poll::Ready(ret);
}
}
// now we should arm it again.
// we will copy the data and return Ready.
// Though return Ready does not mean really ready, but this helps preventing
// poll_write different data.
// # Safety
// We always make sure the write_buf is Some.
let mut owned_buf = unsafe { this.write_buf.take().unwrap_unchecked() };
let owned_buf_mut = owned_buf.buf_to_write();
let len = buf.len().min(owned_buf_mut.len());
// # Safety
// We can make sure the buf and buf_mut_slice have len size data.
unsafe { std::ptr::copy_nonoverlapping(buf.as_ptr(), owned_buf_mut.as_mut_ptr(), len) };
unsafe { owned_buf.set_init(len) };
// we must leak the stream
let stream = unsafe { &mut *this.stream.get() };
this.write_fut
.arm_future(AsyncWriteRentExt::write_all(stream, owned_buf));
match this.write_fut.poll(cx) {
std::task::Poll::Ready((ret, mut buf)) => {
unsafe { buf.set_init(0) };
this.write_buf = Some(buf);
if ret.is_err() {
return std::task::Poll::Ready(ret);
}
}
std::task::Poll::Pending => (),
}
// if there is no error, no matter it is sending or sent, we will
// return Ready.
std::task::Poll::Ready(Ok(len))
}
fn poll_flush(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
let this = self.get_mut();
if this.write_fut.armed() {
match this.write_fut.poll(cx) {
std::task::Poll::Ready((ret, mut buf)) => {
unsafe { buf.set_init(0) };
this.write_buf = Some(buf);
if let Err(e) = ret {
return std::task::Poll::Ready(Err(e));
}
}
std::task::Poll::Pending => return std::task::Poll::Pending,
}
}
if !this.flush_fut.armed() {
let stream = unsafe { &mut *this.stream.get() };
this.flush_fut.arm_future(stream.flush());
}
this.flush_fut.poll(cx)
}
fn poll_shutdown(
self: std::pin::Pin<&mut Self>,
cx: &mut std::task::Context<'_>,
) -> std::task::Poll<Result<(), std::io::Error>> {
let this = self.get_mut();
if this.write_fut.armed() {
match this.write_fut.poll(cx) {
std::task::Poll::Ready((ret, mut buf)) => {
unsafe { buf.set_init(0) };
this.write_buf = Some(buf);
if let Err(e) = ret {
return std::task::Poll::Ready(Err(e));
}
}
std::task::Poll::Pending => return std::task::Poll::Pending,
}
}
if !this.shutdown_fut.armed() {
let stream = unsafe { &mut *this.stream.get() };
this.shutdown_fut.arm_future(stream.shutdown());
}
this.shutdown_fut.poll(cx)
}
}
|