diff options
Diffstat (limited to 'zerotierone/node/Switch.cpp')
| -rw-r--r-- | zerotierone/node/Switch.cpp | 862 |
1 files changed, 862 insertions, 0 deletions
diff --git a/zerotierone/node/Switch.cpp b/zerotierone/node/Switch.cpp new file mode 100644 index 0000000..e7cda1b --- /dev/null +++ b/zerotierone/node/Switch.cpp @@ -0,0 +1,862 @@ +/* + * ZeroTier One - Network Virtualization Everywhere + * Copyright (C) 2011-2016 ZeroTier, Inc. https://www.zerotier.com/ + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see <http://www.gnu.org/licenses/>. + */ + +#include <stdio.h> +#include <stdlib.h> + +#include <algorithm> +#include <utility> +#include <stdexcept> + +#include "../version.h" +#include "../include/ZeroTierOne.h" + +#include "Constants.hpp" +#include "RuntimeEnvironment.hpp" +#include "Switch.hpp" +#include "Node.hpp" +#include "InetAddress.hpp" +#include "Topology.hpp" +#include "Peer.hpp" +#include "SelfAwareness.hpp" +#include "Packet.hpp" +#include "Cluster.hpp" + +namespace ZeroTier { + +#ifdef ZT_TRACE +static const char *etherTypeName(const unsigned int etherType) +{ + switch(etherType) { + case ZT_ETHERTYPE_IPV4: return "IPV4"; + case ZT_ETHERTYPE_ARP: return "ARP"; + case ZT_ETHERTYPE_RARP: return "RARP"; + case ZT_ETHERTYPE_ATALK: return "ATALK"; + case ZT_ETHERTYPE_AARP: return "AARP"; + case ZT_ETHERTYPE_IPX_A: return "IPX_A"; + case ZT_ETHERTYPE_IPX_B: return "IPX_B"; + case ZT_ETHERTYPE_IPV6: return "IPV6"; + } + return "UNKNOWN"; +} +#endif // ZT_TRACE + +Switch::Switch(const RuntimeEnvironment *renv) : + RR(renv), + _lastBeaconResponse(0), + _outstandingWhoisRequests(32), + _lastUniteAttempt(8) // only really used on root servers and upstreams, and it'll grow there just fine +{ +} + +Switch::~Switch() +{ +} + +void Switch::onRemotePacket(const InetAddress &localAddr,const InetAddress &fromAddr,const void *data,unsigned int len) +{ + try { + const uint64_t now = RR->node->now(); + + if (len == 13) { + /* LEGACY: before VERB_PUSH_DIRECT_PATHS, peers used broadcast + * announcements on the LAN to solve the 'same network problem.' We + * no longer send these, but we'll listen for them for a while to + * locate peers with versions <1.0.4. */ + + Address beaconAddr(reinterpret_cast<const char *>(data) + 8,5); + if (beaconAddr == RR->identity.address()) + return; + if (!RR->node->shouldUsePathForZeroTierTraffic(localAddr,fromAddr)) + return; + SharedPtr<Peer> peer(RR->topology->getPeer(beaconAddr)); + if (peer) { // we'll only respond to beacons from known peers + if ((now - _lastBeaconResponse) >= 2500) { // limit rate of responses + _lastBeaconResponse = now; + Packet outp(peer->address(),RR->identity.address(),Packet::VERB_NOP); + outp.armor(peer->key(),true); + RR->node->putPacket(localAddr,fromAddr,outp.data(),outp.size()); + } + } + + } else if (len > ZT_PROTO_MIN_FRAGMENT_LENGTH) { // min length check is important! + if (reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_FRAGMENT_IDX_FRAGMENT_INDICATOR] == ZT_PACKET_FRAGMENT_INDICATOR) { + // Handle fragment ---------------------------------------------------- + + Packet::Fragment fragment(data,len); + const Address destination(fragment.destination()); + + if (destination != RR->identity.address()) { + // Fragment is not for us, so try to relay it + if (fragment.hops() < ZT_RELAY_MAX_HOPS) { + fragment.incrementHops(); + + // Note: we don't bother initiating NAT-t for fragments, since heads will set that off. + // It wouldn't hurt anything, just redundant and unnecessary. + SharedPtr<Peer> relayTo = RR->topology->getPeer(destination); + if ((!relayTo)||(!relayTo->send(fragment.data(),fragment.size(),now))) { +#ifdef ZT_ENABLE_CLUSTER + if (RR->cluster) { + RR->cluster->sendViaCluster(Address(),destination,fragment.data(),fragment.size(),false); + return; + } +#endif + + // Don't know peer or no direct path -- so relay via root server + relayTo = RR->topology->getBestRoot(); + if (relayTo) + relayTo->send(fragment.data(),fragment.size(),now); + } + } else { + TRACE("dropped relay [fragment](%s) -> %s, max hops exceeded",fromAddr.toString().c_str(),destination.toString().c_str()); + } + } else { + // Fragment looks like ours + const uint64_t fragmentPacketId = fragment.packetId(); + const unsigned int fragmentNumber = fragment.fragmentNumber(); + const unsigned int totalFragments = fragment.totalFragments(); + + if ((totalFragments <= ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber < ZT_MAX_PACKET_FRAGMENTS)&&(fragmentNumber > 0)&&(totalFragments > 1)) { + // Fragment appears basically sane. Its fragment number must be + // 1 or more, since a Packet with fragmented bit set is fragment 0. + // Total fragments must be more than 1, otherwise why are we + // seeing a Packet::Fragment? + + Mutex::Lock _l(_rxQueue_m); + RXQueueEntry *const rq = _findRXQueueEntry(now,fragmentPacketId); + + if ((!rq->timestamp)||(rq->packetId != fragmentPacketId)) { + // No packet found, so we received a fragment without its head. + //TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str()); + + rq->timestamp = now; + rq->packetId = fragmentPacketId; + rq->frags[fragmentNumber - 1] = fragment; + rq->totalFragments = totalFragments; // total fragment count is known + rq->haveFragments = 1 << fragmentNumber; // we have only this fragment + rq->complete = false; + } else if (!(rq->haveFragments & (1 << fragmentNumber))) { + // We have other fragments and maybe the head, so add this one and check + //TRACE("fragment (%u/%u) of %.16llx from %s",fragmentNumber + 1,totalFragments,fragmentPacketId,fromAddr.toString().c_str()); + + rq->frags[fragmentNumber - 1] = fragment; + rq->totalFragments = totalFragments; + + if (Utils::countBits(rq->haveFragments |= (1 << fragmentNumber)) == totalFragments) { + // We have all fragments -- assemble and process full Packet + //TRACE("packet %.16llx is complete, assembling and processing...",fragmentPacketId); + + for(unsigned int f=1;f<totalFragments;++f) + rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength()); + + if (rq->frag0.tryDecode(RR,false)) { + rq->timestamp = 0; // packet decoded, free entry + } else { + rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something + } + } + } // else this is a duplicate fragment, ignore + } + } + + // -------------------------------------------------------------------- + } else if (len >= ZT_PROTO_MIN_PACKET_LENGTH) { // min length check is important! + // Handle packet head ------------------------------------------------- + + // See packet format in Packet.hpp to understand this + const uint64_t packetId = ( + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[0]) << 56) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[1]) << 48) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[2]) << 40) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[3]) << 32) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[4]) << 24) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[5]) << 16) | + (((uint64_t)reinterpret_cast<const uint8_t *>(data)[6]) << 8) | + ((uint64_t)reinterpret_cast<const uint8_t *>(data)[7]) + ); + const Address destination(reinterpret_cast<const uint8_t *>(data) + 8,ZT_ADDRESS_LENGTH); + const Address source(reinterpret_cast<const uint8_t *>(data) + 13,ZT_ADDRESS_LENGTH); + + // Catch this and toss it -- it would never work, but it could happen if we somehow + // mistakenly guessed an address we're bound to as a destination for another peer. + if (source == RR->identity.address()) + return; + + //TRACE("<< %.16llx %s -> %s (size: %u)",(unsigned long long)packet->packetId(),source.toString().c_str(),destination.toString().c_str(),packet->size()); + + if (destination != RR->identity.address()) { + Packet packet(data,len); + + // Packet is not for us, so try to relay it + if (packet.hops() < ZT_RELAY_MAX_HOPS) { + packet.incrementHops(); + + SharedPtr<Peer> relayTo = RR->topology->getPeer(destination); + if ((relayTo)&&((relayTo->send(packet.data(),packet.size(),now)))) { + Mutex::Lock _l(_lastUniteAttempt_m); + uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)]; + if ((now - luts) >= ZT_MIN_UNITE_INTERVAL) { + luts = now; + unite(source,destination); + } + } else { +#ifdef ZT_ENABLE_CLUSTER + if (RR->cluster) { + bool shouldUnite; + { + Mutex::Lock _l(_lastUniteAttempt_m); + uint64_t &luts = _lastUniteAttempt[_LastUniteKey(source,destination)]; + shouldUnite = ((now - luts) >= ZT_MIN_UNITE_INTERVAL); + if (shouldUnite) + luts = now; + } + RR->cluster->sendViaCluster(source,destination,packet.data(),packet.size(),shouldUnite); + return; + } +#endif + relayTo = RR->topology->getBestRoot(&source,1,true); + if (relayTo) + relayTo->send(packet.data(),packet.size(),now); + } + } else { + TRACE("dropped relay %s(%s) -> %s, max hops exceeded",packet.source().toString().c_str(),fromAddr.toString().c_str(),destination.toString().c_str()); + } + } else if ((reinterpret_cast<const uint8_t *>(data)[ZT_PACKET_IDX_FLAGS] & ZT_PROTO_FLAG_FRAGMENTED) != 0) { + // Packet is the head of a fragmented packet series + + Mutex::Lock _l(_rxQueue_m); + RXQueueEntry *const rq = _findRXQueueEntry(now,packetId); + + if ((!rq->timestamp)||(rq->packetId != packetId)) { + // If we have no other fragments yet, create an entry and save the head + //TRACE("fragment (0/?) of %.16llx from %s",pid,fromAddr.toString().c_str()); + + rq->timestamp = now; + rq->packetId = packetId; + rq->frag0.init(data,len,localAddr,fromAddr,now); + rq->totalFragments = 0; + rq->haveFragments = 1; + rq->complete = false; + } else if (!(rq->haveFragments & 1)) { + // If we have other fragments but no head, see if we are complete with the head + + if ((rq->totalFragments > 1)&&(Utils::countBits(rq->haveFragments |= 1) == rq->totalFragments)) { + // We have all fragments -- assemble and process full Packet + //TRACE("packet %.16llx is complete, assembling and processing...",pid); + + rq->frag0.init(data,len,localAddr,fromAddr,now); + for(unsigned int f=1;f<rq->totalFragments;++f) + rq->frag0.append(rq->frags[f - 1].payload(),rq->frags[f - 1].payloadLength()); + + if (rq->frag0.tryDecode(RR,false)) { + rq->timestamp = 0; // packet decoded, free entry + } else { + rq->complete = true; // set complete flag but leave entry since it probably needs WHOIS or something + } + } else { + // Still waiting on more fragments, but keep the head + rq->frag0.init(data,len,localAddr,fromAddr,now); + } + } // else this is a duplicate head, ignore + } else { + // Packet is unfragmented, so just process it + IncomingPacket packet(data,len,localAddr,fromAddr,now); + if (!packet.tryDecode(RR,false)) { + Mutex::Lock _l(_rxQueue_m); + RXQueueEntry *rq = &(_rxQueue[ZT_RX_QUEUE_SIZE - 1]); + unsigned long i = ZT_RX_QUEUE_SIZE - 1; + while ((i)&&(rq->timestamp)) { + RXQueueEntry *tmp = &(_rxQueue[--i]); + if (tmp->timestamp < rq->timestamp) + rq = tmp; + } + rq->timestamp = now; + rq->packetId = packetId; + rq->frag0 = packet; + rq->totalFragments = 1; + rq->haveFragments = 1; + rq->complete = true; + } + } + + // -------------------------------------------------------------------- + } + } + } catch (std::exception &ex) { + TRACE("dropped packet from %s: unexpected exception: %s",fromAddr.toString().c_str(),ex.what()); + } catch ( ... ) { + TRACE("dropped packet from %s: unexpected exception: (unknown)",fromAddr.toString().c_str()); + } +} + +void Switch::onLocalEthernet(const SharedPtr<Network> &network,const MAC &from,const MAC &to,unsigned int etherType,unsigned int vlanId,const void *data,unsigned int len) +{ + if (!network->hasConfig()) + return; + + // Sanity check -- bridge loop? OS problem? + if (to == network->mac()) + return; + + // Check to make sure this protocol is allowed on this network + if (!network->config().permitsEtherType(etherType)) { + TRACE("%.16llx: ignored tap: %s -> %s: ethertype %s not allowed on network %.16llx",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),(unsigned long long)network->id()); + return; + } + + // Check if this packet is from someone other than the tap -- i.e. bridged in + bool fromBridged = false; + if (from != network->mac()) { + if (!network->config().permitsBridging(RR->identity.address())) { + TRACE("%.16llx: %s -> %s %s not forwarded, bridging disabled or this peer not a bridge",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType)); + return; + } + fromBridged = true; + } + + if (to.isMulticast()) { + // Destination is a multicast address (including broadcast) + MulticastGroup mg(to,0); + + if (to.isBroadcast()) { + if ( (etherType == ZT_ETHERTYPE_ARP) && (len >= 28) && ((((const uint8_t *)data)[2] == 0x08)&&(((const uint8_t *)data)[3] == 0x00)&&(((const uint8_t *)data)[4] == 6)&&(((const uint8_t *)data)[5] == 4)&&(((const uint8_t *)data)[7] == 0x01)) ) { + /* IPv4 ARP is one of the few special cases that we impose upon what is + * otherwise a straightforward Ethernet switch emulation. Vanilla ARP + * is dumb old broadcast and simply doesn't scale. ZeroTier multicast + * groups have an additional field called ADI (additional distinguishing + * information) which was added specifically for ARP though it could + * be used for other things too. We then take ARP broadcasts and turn + * them into multicasts by stuffing the IP address being queried into + * the 32-bit ADI field. In practice this uses our multicast pub/sub + * system to implement a kind of extended/distributed ARP table. */ + mg = MulticastGroup::deriveMulticastGroupForAddressResolution(InetAddress(((const unsigned char *)data) + 24,4,0)); + } else if (!network->config().enableBroadcast()) { + // Don't transmit broadcasts if this network doesn't want them + TRACE("%.16llx: dropped broadcast since ff:ff:ff:ff:ff:ff is not enabled",network->id()); + return; + } + } else if ((etherType == ZT_ETHERTYPE_IPV6)&&(len >= (40 + 8 + 16))) { + /* IPv6 NDP emulation on ZeroTier-RFC4193 addressed networks! This allows + * for multicast-free operation in IPv6 networks, which both improves + * performance and is friendlier to mobile and (especially) IoT devices. + * In the future there may be a no-multicast build option for embedded + * and IoT use and this will be the preferred addressing mode. Note that + * it plays nice with our L2 emulation philosophy and even with bridging. + * While "real" devices behind the bridge can't have ZT-RFC4193 addresses + * themselves, they can look these addresses up with NDP and it will + * work just fine. */ + if ((reinterpret_cast<const uint8_t *>(data)[6] == 0x3a)&&(reinterpret_cast<const uint8_t *>(data)[40] == 0x87)) { // ICMPv6 neighbor solicitation + for(unsigned int sipk=0;sipk<network->config().staticIpCount;++sipk) { + const InetAddress *sip = &(network->config().staticIps[sipk]); + if ((sip->ss_family == AF_INET6)&&(Utils::ntoh((uint16_t)reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_port) == 88)) { + const uint8_t *my6 = reinterpret_cast<const uint8_t *>(reinterpret_cast<const struct sockaddr_in6 *>(&(*sip))->sin6_addr.s6_addr); + if ((my6[0] == 0xfd)&&(my6[9] == 0x99)&&(my6[10] == 0x93)) { // ZT-RFC4193 == fd__:____:____:____:__99:93__:____:____ / 88 + const uint8_t *pkt6 = reinterpret_cast<const uint8_t *>(data) + 40 + 8; + unsigned int ptr = 0; + while (ptr != 11) { + if (pkt6[ptr] != my6[ptr]) + break; + ++ptr; + } + if (ptr == 11) { // /88 matches an assigned address on this network + const Address atPeer(pkt6 + ptr,5); + if (atPeer != RR->identity.address()) { + const MAC atPeerMac(atPeer,network->id()); + TRACE("ZT-RFC4193 NDP emulation: %.16llx: forging response for %s/%s",network->id(),atPeer.toString().c_str(),atPeerMac.toString().c_str()); + + uint8_t adv[72]; + adv[0] = 0x60; adv[1] = 0x00; adv[2] = 0x00; adv[3] = 0x00; + adv[4] = 0x00; adv[5] = 0x20; + adv[6] = 0x3a; adv[7] = 0xff; + for(int i=0;i<16;++i) adv[8 + i] = pkt6[i]; + for(int i=0;i<16;++i) adv[24 + i] = my6[i]; + adv[40] = 0x88; adv[41] = 0x00; + adv[42] = 0x00; adv[43] = 0x00; // future home of checksum + adv[44] = 0x60; adv[45] = 0x00; adv[46] = 0x00; adv[47] = 0x00; + for(int i=0;i<16;++i) adv[48 + i] = pkt6[i]; + adv[64] = 0x02; adv[65] = 0x01; + adv[66] = atPeerMac[0]; adv[67] = atPeerMac[1]; adv[68] = atPeerMac[2]; adv[69] = atPeerMac[3]; adv[70] = atPeerMac[4]; adv[71] = atPeerMac[5]; + + uint16_t pseudo_[36]; + uint8_t *const pseudo = reinterpret_cast<uint8_t *>(pseudo_); + for(int i=0;i<32;++i) pseudo[i] = adv[8 + i]; + pseudo[32] = 0x00; pseudo[33] = 0x00; pseudo[34] = 0x00; pseudo[35] = 0x20; + pseudo[36] = 0x00; pseudo[37] = 0x00; pseudo[38] = 0x00; pseudo[39] = 0x3a; + for(int i=0;i<32;++i) pseudo[40 + i] = adv[40 + i]; + uint32_t checksum = 0; + for(int i=0;i<36;++i) checksum += Utils::hton(pseudo_[i]); + while ((checksum >> 16)) checksum = (checksum & 0xffff) + (checksum >> 16); + checksum = ~checksum; + adv[42] = (checksum >> 8) & 0xff; + adv[43] = checksum & 0xff; + + RR->node->putFrame(network->id(),network->userPtr(),atPeerMac,from,ZT_ETHERTYPE_IPV6,0,adv,72); + return; // stop processing: we have handled this frame with a spoofed local reply so no need to send it anywhere + } + } + } + } + } + } + } + + /* Learn multicast groups for bridged-in hosts. + * Note that some OSes, most notably Linux, do this for you by learning + * multicast addresses on bridge interfaces and subscribing each slave. + * But in that case this does no harm, as the sets are just merged. */ + if (fromBridged) + network->learnBridgedMulticastGroup(mg,RR->node->now()); + + //TRACE("%.16llx: MULTICAST %s -> %s %s %u",network->id(),from.toString().c_str(),mg.toString().c_str(),etherTypeName(etherType),len); + + RR->mc->send( + ((!network->config().isPublic())&&(network->config().com)) ? &(network->config().com) : (const CertificateOfMembership *)0, + network->config().multicastLimit, + RR->node->now(), + network->id(), + network->config().activeBridges(), + mg, + (fromBridged) ? from : MAC(), + etherType, + data, + len); + + return; + } + + if (to[0] == MAC::firstOctetForNetwork(network->id())) { + // Destination is another ZeroTier peer on the same network + + Address toZT(to.toAddress(network->id())); // since in-network MACs are derived from addresses and network IDs, we can reverse this + SharedPtr<Peer> toPeer(RR->topology->getPeer(toZT)); + const bool includeCom = ( (network->config().isPrivate()) && (network->config().com) && ((!toPeer)||(toPeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ); + if ((fromBridged)||(includeCom)) { + Packet outp(toZT,RR->identity.address(),Packet::VERB_EXT_FRAME); + outp.append(network->id()); + if (includeCom) { + outp.append((unsigned char)0x01); // 0x01 -- COM included + network->config().com.serialize(outp); + } else { + outp.append((unsigned char)0x00); + } + to.appendTo(outp); + from.appendTo(outp); + outp.append((uint16_t)etherType); + outp.append(data,len); + outp.compress(); + send(outp,true,network->id()); + } else { + Packet outp(toZT,RR->identity.address(),Packet::VERB_FRAME); + outp.append(network->id()); + outp.append((uint16_t)etherType); + outp.append(data,len); + outp.compress(); + send(outp,true,network->id()); + } + + //TRACE("%.16llx: UNICAST: %s -> %s etherType==%s(%.4x) vlanId==%u len==%u fromBridged==%d includeCom==%d",network->id(),from.toString().c_str(),to.toString().c_str(),etherTypeName(etherType),etherType,vlanId,len,(int)fromBridged,(int)includeCom); + + return; + } + + { + // Destination is bridged behind a remote peer + + Address bridges[ZT_MAX_BRIDGE_SPAM]; + unsigned int numBridges = 0; + + /* Create an array of up to ZT_MAX_BRIDGE_SPAM recipients for this bridged frame. */ + bridges[0] = network->findBridgeTo(to); + std::vector<Address> activeBridges(network->config().activeBridges()); + if ((bridges[0])&&(bridges[0] != RR->identity.address())&&(network->config().permitsBridging(bridges[0]))) { + /* We have a known bridge route for this MAC, send it there. */ + ++numBridges; + } else if (!activeBridges.empty()) { + /* If there is no known route, spam to up to ZT_MAX_BRIDGE_SPAM active + * bridges. If someone responds, we'll learn the route. */ + std::vector<Address>::const_iterator ab(activeBridges.begin()); + if (activeBridges.size() <= ZT_MAX_BRIDGE_SPAM) { + // If there are <= ZT_MAX_BRIDGE_SPAM active bridges, spam them all + while (ab != activeBridges.end()) { + bridges[numBridges++] = *ab; + ++ab; + } + } else { + // Otherwise pick a random set of them + while (numBridges < ZT_MAX_BRIDGE_SPAM) { + if (ab == activeBridges.end()) + ab = activeBridges.begin(); + if (((unsigned long)RR->node->prng() % (unsigned long)activeBridges.size()) == 0) { + bridges[numBridges++] = *ab; + ++ab; + } else ++ab; + } + } + } + + for(unsigned int b=0;b<numBridges;++b) { + SharedPtr<Peer> bridgePeer(RR->topology->getPeer(bridges[b])); + Packet outp(bridges[b],RR->identity.address(),Packet::VERB_EXT_FRAME); + outp.append(network->id()); + if ( (network->config().isPrivate()) && (network->config().com) && ((!bridgePeer)||(bridgePeer->needsOurNetworkMembershipCertificate(network->id(),RR->node->now(),true))) ) { + outp.append((unsigned char)0x01); // 0x01 -- COM included + network->config().com.serialize(outp); + } else { + outp.append((unsigned char)0); + } + to.appendTo(outp); + from.appendTo(outp); + outp.append((uint16_t)etherType); + outp.append(data,len); + outp.compress(); + send(outp,true,network->id()); + } + } +} + +void Switch::send(const Packet &packet,bool encrypt,uint64_t nwid) +{ + if (packet.destination() == RR->identity.address()) { + TRACE("BUG: caught attempt to send() to self, ignored"); + return; + } + + //TRACE(">> %s to %s (%u bytes, encrypt==%d, nwid==%.16llx)",Packet::verbString(packet.verb()),packet.destination().toString().c_str(),packet.size(),(int)encrypt,nwid); + + if (!_trySend(packet,encrypt,nwid)) { + Mutex::Lock _l(_txQueue_m); + _txQueue.push_back(TXQueueEntry(packet.destination(),RR->node->now(),packet,encrypt,nwid)); + } +} + +bool Switch::unite(const Address &p1,const Address &p2) +{ + if ((p1 == RR->identity.address())||(p2 == RR->identity.address())) + return false; + SharedPtr<Peer> p1p = RR->topology->getPeer(p1); + if (!p1p) + return false; + SharedPtr<Peer> p2p = RR->topology->getPeer(p2); + if (!p2p) + return false; + + const uint64_t now = RR->node->now(); + + std::pair<InetAddress,InetAddress> cg(Peer::findCommonGround(*p1p,*p2p,now)); + if ((!(cg.first))||(cg.first.ipScope() != cg.second.ipScope())) + return false; + + TRACE("unite: %s(%s) <> %s(%s)",p1.toString().c_str(),cg.second.toString().c_str(),p2.toString().c_str(),cg.first.toString().c_str()); + + /* Tell P1 where to find P2 and vice versa, sending the packets to P1 and + * P2 in randomized order in terms of which gets sent first. This is done + * since in a few cases NAT-t can be sensitive to slight timing differences + * in terms of when the two peers initiate. Normally this is accounted for + * by the nearly-simultaneous RENDEZVOUS kickoff from the relay, but + * given that relay are hosted on cloud providers this can in some + * cases have a few ms of latency between packet departures. By randomizing + * the order we make each attempted NAT-t favor one or the other going + * first, meaning if it doesn't succeed the first time it might the second + * and so forth. */ + unsigned int alt = (unsigned int)RR->node->prng() & 1; + unsigned int completed = alt + 2; + while (alt != completed) { + if ((alt & 1) == 0) { + // Tell p1 where to find p2. + Packet outp(p1,RR->identity.address(),Packet::VERB_RENDEZVOUS); + outp.append((unsigned char)0); + p2.appendTo(outp); + outp.append((uint16_t)cg.first.port()); + if (cg.first.isV6()) { + outp.append((unsigned char)16); + outp.append(cg.first.rawIpData(),16); + } else { + outp.append((unsigned char)4); + outp.append(cg.first.rawIpData(),4); + } + outp.armor(p1p->key(),true); + p1p->send(outp.data(),outp.size(),now); + } else { + // Tell p2 where to find p1. + Packet outp(p2,RR->identity.address(),Packet::VERB_RENDEZVOUS); + outp.append((unsigned char)0); + p1.appendTo(outp); + outp.append((uint16_t)cg.second.port()); + if (cg.second.isV6()) { + outp.append((unsigned char)16); + outp.append(cg.second.rawIpData(),16); + } else { + outp.append((unsigned char)4); + outp.append(cg.second.rawIpData(),4); + } + outp.armor(p2p->key(),true); + p2p->send(outp.data(),outp.size(),now); + } + ++alt; // counts up and also flips LSB + } + + return true; +} + +void Switch::rendezvous(const SharedPtr<Peer> &peer,const InetAddress &localAddr,const InetAddress &atAddr) +{ + TRACE("sending NAT-t message to %s(%s)",peer->address().toString().c_str(),atAddr.toString().c_str()); + const uint64_t now = RR->node->now(); + peer->sendHELLO(localAddr,atAddr,now,2); // first attempt: send low-TTL packet to 'open' local NAT + { + Mutex::Lock _l(_contactQueue_m); + _contactQueue.push_back(ContactQueueEntry(peer,now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY,localAddr,atAddr)); + } +} + +void Switch::requestWhois(const Address &addr) +{ + bool inserted = false; + { + Mutex::Lock _l(_outstandingWhoisRequests_m); + WhoisRequest &r = _outstandingWhoisRequests[addr]; + if (r.lastSent) { + r.retries = 0; // reset retry count if entry already existed, but keep waiting and retry again after normal timeout + } else { + r.lastSent = RR->node->now(); + inserted = true; + } + } + if (inserted) + _sendWhoisRequest(addr,(const Address *)0,0); +} + +void Switch::doAnythingWaitingForPeer(const SharedPtr<Peer> &peer) +{ + { // cancel pending WHOIS since we now know this peer + Mutex::Lock _l(_outstandingWhoisRequests_m); + _outstandingWhoisRequests.erase(peer->address()); + } + + { // finish processing any packets waiting on peer's public key / identity + Mutex::Lock _l(_rxQueue_m); + unsigned long i = ZT_RX_QUEUE_SIZE; + while (i) { + RXQueueEntry *rq = &(_rxQueue[--i]); + if ((rq->timestamp)&&(rq->complete)) { + if (rq->frag0.tryDecode(RR,false)) + rq->timestamp = 0; + } + } + } + + { // finish sending any packets waiting on peer's public key / identity + Mutex::Lock _l(_txQueue_m); + for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { + if (txi->dest == peer->address()) { + if (_trySend(txi->packet,txi->encrypt,txi->nwid)) + _txQueue.erase(txi++); + else ++txi; + } else ++txi; + } + } +} + +unsigned long Switch::doTimerTasks(uint64_t now) +{ + unsigned long nextDelay = 0xffffffff; // ceiling delay, caller will cap to minimum + + { // Iterate through NAT traversal strategies for entries in contact queue + Mutex::Lock _l(_contactQueue_m); + for(std::list<ContactQueueEntry>::iterator qi(_contactQueue.begin());qi!=_contactQueue.end();) { + if (now >= qi->fireAtTime) { + if (!qi->peer->pushDirectPaths(qi->localAddr,qi->inaddr,now,true,false)) + qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now); + _contactQueue.erase(qi++); + continue; + /* Old symmetric NAT buster code, obsoleted by port prediction alg in SelfAwareness but left around for now in case we revert + if (qi->strategyIteration == 0) { + // First strategy: send packet directly to destination + qi->peer->sendHELLO(qi->localAddr,qi->inaddr,now); + } else if (qi->strategyIteration <= 3) { + // Strategies 1-3: try escalating ports for symmetric NATs that remap sequentially + InetAddress tmpaddr(qi->inaddr); + int p = (int)qi->inaddr.port() + qi->strategyIteration; + if (p > 65535) + p -= 64511; + tmpaddr.setPort((unsigned int)p); + qi->peer->sendHELLO(qi->localAddr,tmpaddr,now); + } else { + // All strategies tried, expire entry + _contactQueue.erase(qi++); + continue; + } + ++qi->strategyIteration; + qi->fireAtTime = now + ZT_NAT_T_TACTICAL_ESCALATION_DELAY; + nextDelay = std::min(nextDelay,(unsigned long)ZT_NAT_T_TACTICAL_ESCALATION_DELAY); + */ + } else { + nextDelay = std::min(nextDelay,(unsigned long)(qi->fireAtTime - now)); + } + ++qi; // if qi was erased, loop will have continued before here + } + } + + { // Retry outstanding WHOIS requests + Mutex::Lock _l(_outstandingWhoisRequests_m); + Hashtable< Address,WhoisRequest >::Iterator i(_outstandingWhoisRequests); + Address *a = (Address *)0; + WhoisRequest *r = (WhoisRequest *)0; + while (i.next(a,r)) { + const unsigned long since = (unsigned long)(now - r->lastSent); + if (since >= ZT_WHOIS_RETRY_DELAY) { + if (r->retries >= ZT_MAX_WHOIS_RETRIES) { + TRACE("WHOIS %s timed out",a->toString().c_str()); + _outstandingWhoisRequests.erase(*a); + } else { + r->lastSent = now; + r->peersConsulted[r->retries] = _sendWhoisRequest(*a,r->peersConsulted,r->retries); + ++r->retries; + TRACE("WHOIS %s (retry %u)",a->toString().c_str(),r->retries); + nextDelay = std::min(nextDelay,(unsigned long)ZT_WHOIS_RETRY_DELAY); + } + } else { + nextDelay = std::min(nextDelay,ZT_WHOIS_RETRY_DELAY - since); + } + } + } + + { // Time out TX queue packets that never got WHOIS lookups or other info. + Mutex::Lock _l(_txQueue_m); + for(std::list< TXQueueEntry >::iterator txi(_txQueue.begin());txi!=_txQueue.end();) { + if (_trySend(txi->packet,txi->encrypt,txi->nwid)) + _txQueue.erase(txi++); + else if ((now - txi->creationTime) > ZT_TRANSMIT_QUEUE_TIMEOUT) { + TRACE("TX %s -> %s timed out",txi->packet.source().toString().c_str(),txi->packet.destination().toString().c_str()); + _txQueue.erase(txi++); + } else ++txi; + } + } + + { // Remove really old last unite attempt entries to keep table size controlled + Mutex::Lock _l(_lastUniteAttempt_m); + Hashtable< _LastUniteKey,uint64_t >::Iterator i(_lastUniteAttempt); + _LastUniteKey *k = (_LastUniteKey *)0; + uint64_t *v = (uint64_t *)0; + while (i.next(k,v)) { + if ((now - *v) >= (ZT_MIN_UNITE_INTERVAL * 8)) + _lastUniteAttempt.erase(*k); + } + } + + return nextDelay; +} + +Address Switch::_sendWhoisRequest(const Address &addr,const Address *peersAlreadyConsulted,unsigned int numPeersAlreadyConsulted) +{ + SharedPtr<Peer> root(RR->topology->getBestRoot(peersAlreadyConsulted,numPeersAlreadyConsulted,false)); + if (root) { + Packet outp(root->address(),RR->identity.address(),Packet::VERB_WHOIS); + addr.appendTo(outp); + outp.armor(root->key(),true); + if (root->send(outp.data(),outp.size(),RR->node->now())) + return root->address(); + } + return Address(); +} + +bool Switch::_trySend(const Packet &packet,bool encrypt,uint64_t nwid) +{ + SharedPtr<Peer> peer(RR->topology->getPeer(packet.destination())); + + if (peer) { + const uint64_t now = RR->node->now(); + + SharedPtr<Network> network; + if (nwid) { + network = RR->node->network(nwid); + if ((!network)||(!network->hasConfig())) + return false; // we probably just left this network, let its packets die + } + + Path *viaPath = peer->getBestPath(now); + SharedPtr<Peer> relay; + + if (!viaPath) { + if (network) { + unsigned int bestq = ~((unsigned int)0); // max unsigned int since quality is lower==better + unsigned int ptr = 0; + for(;;) { + const Address raddr(network->config().nextRelay(ptr)); + if (raddr) { + SharedPtr<Peer> rp(RR->topology->getPeer(raddr)); + if (rp) { + const unsigned int q = rp->relayQuality(now); + if (q < bestq) { + bestq = q; + rp.swap(relay); + } + } + } else break; + } + } + + if (!relay) + relay = RR->topology->getBestRoot(); + + if ( (!relay) || (!(viaPath = relay->getBestPath(now))) ) + return false; + } + // viaPath will not be null if we make it here + + // Push possible direct paths to us if we are relaying + if (relay) { + peer->pushDirectPaths(viaPath->localAddress(),viaPath->address(),now,false,( (network)&&(network->isAllowed(peer)) )); + viaPath->sent(now); + } + + Packet tmp(packet); + + unsigned int chunkSize = std::min(tmp.size(),(unsigned int)ZT_UDP_DEFAULT_PAYLOAD_MTU); + tmp.setFragmented(chunkSize < tmp.size()); + + tmp.armor(peer->key(),encrypt); + + if (viaPath->send(RR,tmp.data(),chunkSize,now)) { + if (chunkSize < tmp.size()) { + // Too big for one packet, fragment the rest + unsigned int fragStart = chunkSize; + unsigned int remaining = tmp.size() - chunkSize; + unsigned int fragsRemaining = (remaining / (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)); + if ((fragsRemaining * (ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)) < remaining) + ++fragsRemaining; + unsigned int totalFragments = fragsRemaining + 1; + + for(unsigned int fno=1;fno<totalFragments;++fno) { + chunkSize = std::min(remaining,(unsigned int)(ZT_UDP_DEFAULT_PAYLOAD_MTU - ZT_PROTO_MIN_FRAGMENT_LENGTH)); + Packet::Fragment frag(tmp,fragStart,chunkSize,fno,totalFragments); + viaPath->send(RR,frag.data(),frag.size(),now); + fragStart += chunkSize; + remaining -= chunkSize; + } + } + + return true; + } + } else { + requestWhois(packet.destination()); + } + return false; +} + +} // namespace ZeroTier |
