1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
/* SPDX-License-Identifier: BSD-3-Clause
* Copyright(C) 2023 Marvell International Ltd.
*/
#include <arpa/inet.h>
#include <sys/socket.h>
#include <rte_ethdev.h>
#include <rte_ether.h>
#include <rte_graph.h>
#include <rte_graph_worker.h>
#include <rte_ip.h>
#include <rte_lpm.h>
#include <rte_hash.h>
#include <rte_fbk_hash.h>
#include <rte_jhash.h>
#include <rte_hash_crc.h>
#include "rte_node_udp4_input_api.h"
#include "node_private.h"
#define UDP4_INPUT_HASH_TBL_SIZE 1024
#define UDP4_INPUT_NODE_HASH(ctx) \
(((struct udp4_input_node_ctx *)ctx)->hash)
#define UDP4_INPUT_NODE_NEXT_INDEX(ctx) \
(((struct udp4_input_node_ctx *)ctx)->next_index)
/* UDP4 input global data struct */
struct udp4_input_node_main {
struct rte_hash *hash_tbl[RTE_MAX_NUMA_NODES];
};
static struct udp4_input_node_main udp4_input_nm;
struct udp4_input_node_ctx {
/* Socket's Hash table */
struct rte_hash *hash;
/* Cached next index */
uint16_t next_index;
};
struct flow_key {
uint32_t prt_dst;
};
static struct rte_hash_parameters udp4_params = {
.entries = UDP4_INPUT_HASH_TBL_SIZE,
.key_len = sizeof(uint32_t),
.hash_func = rte_jhash,
.hash_func_init_val = 0,
.socket_id = 0,
};
int
rte_node_udp4_dst_port_add(uint32_t dst_port, rte_edge_t next_node)
{
uint8_t socket;
int rc;
for (socket = 0; socket < RTE_MAX_NUMA_NODES; socket++) {
if (!udp4_input_nm.hash_tbl[socket])
continue;
rc = rte_hash_add_key_data(udp4_input_nm.hash_tbl[socket],
&dst_port, (void *)(uintptr_t)next_node);
if (rc < 0) {
node_err("udp4_lookup", "Failed to add key for sock %u, rc=%d",
socket, rc);
return rc;
}
}
return 0;
}
int
rte_node_udp4_usr_node_add(const char *usr_node)
{
const char *next_nodes = usr_node;
rte_node_t udp4_input_node_id, count;
udp4_input_node_id = rte_node_from_name("udp4_input");
count = rte_node_edge_update(udp4_input_node_id, RTE_EDGE_ID_INVALID,
&next_nodes, 1);
if (count == 0) {
node_dbg("udp4_input", "Adding usr node as edge to udp4_input failed");
return count;
}
count = rte_node_edge_count(udp4_input_node_id) - 1;
return count;
}
static int
setup_udp4_dstprt_hash(struct udp4_input_node_main *nm, int socket)
{
struct rte_hash_parameters *hash_udp4 = &udp4_params;
char s[RTE_HASH_NAMESIZE];
/* One Hash table per socket */
if (nm->hash_tbl[socket])
return 0;
/* create Hash table */
snprintf(s, sizeof(s), "UDP4_INPUT_HASH_%d", socket);
hash_udp4->name = s;
hash_udp4->socket_id = socket;
nm->hash_tbl[socket] = rte_hash_create(hash_udp4);
if (nm->hash_tbl[socket] == NULL)
return -rte_errno;
return 0;
}
static int
udp4_input_node_init(const struct rte_graph *graph, struct rte_node *node)
{
uint16_t socket, lcore_id;
static uint8_t init_once;
int rc;
RTE_SET_USED(graph);
RTE_BUILD_BUG_ON(sizeof(struct udp4_input_node_ctx) > RTE_NODE_CTX_SZ);
if (!init_once) {
/* Setup HASH tables for all sockets */
RTE_LCORE_FOREACH(lcore_id)
{
socket = rte_lcore_to_socket_id(lcore_id);
rc = setup_udp4_dstprt_hash(&udp4_input_nm, socket);
if (rc) {
node_err("udp4_lookup",
"Failed to setup hash tbl for sock %u, rc=%d",
socket, rc);
return rc;
}
}
init_once = 1;
}
UDP4_INPUT_NODE_HASH(node->ctx) = udp4_input_nm.hash_tbl[graph->socket];
node_dbg("udp4_input", "Initialized udp4_input node");
return 0;
}
static uint16_t
udp4_input_node_process_scalar(struct rte_graph *graph, struct rte_node *node,
void **objs, uint16_t nb_objs)
{
struct rte_hash *hash_tbl_handle = UDP4_INPUT_NODE_HASH(node->ctx);
rte_edge_t next_index, udplookup_node;
struct rte_udp_hdr *pkt_udp_hdr;
uint16_t last_spec = 0;
void **to_next, **from;
struct rte_mbuf *mbuf;
uint16_t held = 0;
uint16_t next = 0;
int i, rc;
/* Speculative next */
next_index = UDP4_INPUT_NODE_NEXT_INDEX(node->ctx);
from = objs;
to_next = rte_node_next_stream_get(graph, node, next_index, nb_objs);
for (i = 0; i < nb_objs; i++) {
struct flow_key key_port;
mbuf = (struct rte_mbuf *)objs[i];
pkt_udp_hdr = rte_pktmbuf_mtod_offset(mbuf, struct rte_udp_hdr *,
sizeof(struct rte_ether_hdr) +
sizeof(struct rte_ipv4_hdr));
key_port.prt_dst = rte_cpu_to_be_16(pkt_udp_hdr->dst_port);
rc = rte_hash_lookup_data(hash_tbl_handle,
&key_port.prt_dst,
(void **)&udplookup_node);
next = (rc < 0) ? RTE_NODE_UDP4_INPUT_NEXT_PKT_DROP
: udplookup_node;
if (unlikely(next_index != next)) {
/* Copy things successfully speculated till now */
rte_memcpy(to_next, from, last_spec * sizeof(from[0]));
from += last_spec;
to_next += last_spec;
held += last_spec;
last_spec = 0;
rte_node_enqueue_x1(graph, node, next, from[0]);
from += 1;
} else {
last_spec += 1;
}
}
/* !!! Home run !!! */
if (likely(last_spec == nb_objs)) {
rte_node_next_stream_move(graph, node, next_index);
return nb_objs;
}
held += last_spec;
rte_memcpy(to_next, from, last_spec * sizeof(from[0]));
rte_node_next_stream_put(graph, node, next_index, held);
/* Save the last next used */
UDP4_INPUT_NODE_NEXT_INDEX(node->ctx) = next;
return nb_objs;
}
static struct rte_node_register udp4_input_node = {
.process = udp4_input_node_process_scalar,
.name = "udp4_input",
.init = udp4_input_node_init,
.nb_edges = RTE_NODE_UDP4_INPUT_NEXT_PKT_DROP + 1,
.next_nodes = {
[RTE_NODE_UDP4_INPUT_NEXT_PKT_DROP] = "pkt_drop",
},
};
RTE_NODE_REGISTER(udp4_input_node);
|