1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
|
# -*- coding: utf-8 -*-
"""GraphSAGE.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/1oLF3FCe1CYDohND_VJ6unSXqLRaJ5mi3
"""
# from google.colab import drive
# drive.mount('/content/drive')
#采样sampling
import numpy as np
def sampling(src_nodes, sample_num, neighbor_table):
"""根据源节点采样指定数量的邻居节点,注意使用的是有放回的采样;
某个节点的邻居节点数量少于采样数量时,采样结果出现重复的节点
Arguments:
src_nodes {list, ndarray} -- 源节点列表
sample_num {int} -- 需要采样的节点数
neighbor_table {dict} -- 节点到其邻居节点的映射表
Returns:
np.ndarray -- 采样结果构成的列表
"""
results = []
for sid in src_nodes:
# 从节点的邻居中进行有放回地进行采样
res = np.random.choice(neighbor_table[sid], size=(sample_num, ))
results.append(res)
return np.asarray(results).flatten()
def multihop_sampling(src_nodes, sample_nums, neighbor_table):
"""根据源节点进行多阶采样
Arguments:
src_nodes {list, np.ndarray} -- 源节点id
sample_nums {list of int} -- 每一阶需要采样的个数
neighbor_table {dict} -- 节点到其邻居节点的映射
Returns:
[list of ndarray] -- 每一阶采样的结果
"""
sampling_result = [src_nodes]
for k, hopk_num in enumerate(sample_nums):
hopk_result = sampling(sampling_result[k], hopk_num, neighbor_table)
sampling_result.append(hopk_result)
return sampling_result
#聚合
import torch.nn as nn
import torch.nn.functional as F
import torch.nn.init as init
class NeighborAggregator(nn.Module):
def __init__(self, input_dim, output_dim,
use_bias=False, aggr_method="mean"):
"""聚合节点邻居
Args:
input_dim: 输入特征的维度
output_dim: 输出特征的维度
use_bias: 是否使用偏置 (default: {False})
aggr_method: 邻居聚合方式 (default: {mean})
"""
super(NeighborAggregator, self).__init__()
self.input_dim = input_dim
self.output_dim = output_dim
self.use_bias = use_bias
self.aggr_method = aggr_method
self.weight = nn.Parameter(torch.Tensor(input_dim, output_dim))
if self.use_bias:
self.bias = nn.Parameter(torch.Tensor(self.output_dim))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.weight)
if self.use_bias:
init.zeros_(self.bias)
def forward(self, neighbor_feature):
if self.aggr_method == "mean":
aggr_neighbor = neighbor_feature.mean(dim=1)
elif self.aggr_method == "sum":
aggr_neighbor = neighbor_feature.sum(dim=1)
elif self.aggr_method == "max":
aggr_neighbor = neighbor_feature.max(dim=1)
else:
raise ValueError("Unknown aggr type, expected sum, max, or mean, but got {}"
.format(self.aggr_method))
neighbor_hidden = torch.matmul(aggr_neighbor, self.weight)
if self.use_bias:
neighbor_hidden += self.bias
return neighbor_hidden
def extra_repr(self):
return 'in_features={}, out_features={}, aggr_method={}'.format(
self.input_dim, self.output_dim, self.aggr_method)
class SageGCN(nn.Module):
def __init__(self, input_dim, hidden_dim,
activation=F.relu,
aggr_neighbor_method="mean",
aggr_hidden_method="sum"):
"""SageGCN层定义
Args:
input_dim: 输入特征的维度
hidden_dim: 隐层特征的维度,
当aggr_hidden_method=sum, 输出维度为hidden_dim
当aggr_hidden_method=concat, 输出维度为hidden_dim*2
activation: 激活函数
aggr_neighbor_method: 邻居特征聚合方法,["mean", "sum", "max"]
aggr_hidden_method: 节点特征的更新方法,["sum", "concat"]
"""
super(SageGCN, self).__init__()
assert aggr_neighbor_method in ["mean", "sum", "max"]
assert aggr_hidden_method in ["sum", "concat"]
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.aggr_neighbor_method = aggr_neighbor_method
self.aggr_hidden_method = aggr_hidden_method
self.activation = activation
self.aggregator = NeighborAggregator(input_dim, hidden_dim,
aggr_method=aggr_neighbor_method)
self.b = nn.Parameter(torch.Tensor(input_dim, hidden_dim))
self.reset_parameters()
def reset_parameters(self):
init.kaiming_uniform_(self.b)
def forward(self, src_node_features, neighbor_node_features):
neighbor_hidden = self.aggregator(neighbor_node_features)
self_hidden = torch.matmul(src_node_features, self.b)
if self.aggr_hidden_method == "sum":
hidden = self_hidden + neighbor_hidden
elif self.aggr_hidden_method == "concat":
hidden = torch.cat([self_hidden, neighbor_hidden], dim=1)
else:
raise ValueError("Expected sum or concat, got {}"
.format(self.aggr_hidden))
if self.activation:
return self.activation(hidden)
else:
return hidden
def extra_repr(self):
output_dim = self.hidden_dim if self.aggr_hidden_method == "sum" else self.hidden_dim * 2
return 'in_features={}, out_features={}, aggr_hidden_method={}'.format(
self.input_dim, output_dim, self.aggr_hidden_method)
class GraphSage(nn.Module):
def __init__(self, input_dim, hidden_dim,
num_neighbors_list):
super(GraphSage, self).__init__()
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.num_neighbors_list = num_neighbors_list
self.num_layers = len(num_neighbors_list)
self.gcn = nn.ModuleList()
self.gcn.append(SageGCN(input_dim, hidden_dim[0]))
for index in range(0, len(hidden_dim) - 2):
self.gcn.append(SageGCN(hidden_dim[index], hidden_dim[index+1]))
self.gcn.append(SageGCN(hidden_dim[-2], hidden_dim[-1], activation=None))
def forward(self, node_features_list):
hidden = node_features_list
for l in range(self.num_layers):
next_hidden = []
gcn = self.gcn[l]
for hop in range(self.num_layers - l):
src_node_features = hidden[hop]
src_node_num = len(src_node_features)
neighbor_node_features = hidden[hop + 1] \
.view((src_node_num, self.num_neighbors_list[hop], -1))
h = gcn(src_node_features, neighbor_node_features)
next_hidden.append(h)
hidden = next_hidden
return hidden[0]
def extra_repr(self):
return 'in_features={}, num_neighbors_list={}'.format(
self.input_dim, self.num_neighbors_list
)
#数据处理
import os
import os.path as osp
import pickle
import itertools
import scipy.sparse as sp
import urllib
from collections import namedtuple
import numpy as np
Data = namedtuple('Data',['x','y','adjacency_dict','train_mask','val_mask','test_mask'])
class CoraData(object):
download_url = "https://github.com/kimiyoung/planetoid/raw/master/data"
filenames = ["ind.cora.{}".format(name) for name in ['x','tx','allx','y','ty','ally','graph','test.index']]
def __init__(self,data_root="cora",rebuild=False):
"""Cora数据,包括数据下载,处理,加载等功能
当数据的缓存文件存在时,将使用缓存文件,否则将下载、进行处理,并缓存到磁盘
处理之后的数据可以通过属性.data获得,它将返回一个数据对象,包括如下几部分:
* x:节点的特征,维度为2708*1433,类型为np.ndarray
* y:节点的标签,总共包括7个类别,类型为np.ndarray
* adjacency_dict:邻接信息,类型为dict
* train_mask:训练集掩码向量,维度为2708,当节点属于训练集时,相应位置为True,否则False
* val_mask:验证集掩码向量,维度为2708,当节点属于验证集时,相应位置为True,否则False
* test_mask: 测试集掩码向量,维度为2708,当节点属于测试集时,相应位置为True,否则False
Args:
------
data_root:string, optional
存放数据的目录,原始数据路径:{data_root}/raw
缓存数据路径:{data_root}/processed_cora.pkl
rebuild:boolean,optional
是否需要重新构建数据集,当设为True时,如果存在缓存数据也会重建数据
"""
self.data_root=data_root
save_file=osp.join(self.data_root,"processed_cora.pkl")
if osp.exists(save_file) and not rebuild:
print("Using Cached file: {}".format(save_file))
self._data = pickle.load(open(save_file,"rb"))
else:
self.maybe_download()
self._data=self.process_data()
with open(save_file,"wb") as f:
pickle.dump(self.data,f)
print("Cached file: {}".format(save_file))
@property
def data(self):
"""返回Data数据对象,包括x, y, adjacency, train_mask, val_mask, test_mask"""
return self._data
def process_data(self):
"""
处理数据,得到节点特征和标签,邻接矩阵,训练集、验证集以及测试集
引用自:https://github.com/rusty1s/pytorch_geometric
"""
print("Process data ...")
_,tx,allx,y,ty,ally,graph,test_index=[self.read_data(
osp.join(self.data_root,"raw",name)) for name in self.filenames]
train_index = np.arange(y.shape[0])
val_index = np.arange(y.shape[0],y.shape[0]+500)
sorted_test_index = sorted(test_index)
x=np.concatenate((allx,tx),axis=0)
y=np.concatenate((ally,ty),axis=0).argmax(axis=1)
x[test_index] = x[sorted_test_index]
y[test_index]= y[sorted_test_index]
num_nodes=x.shape[0]
train_mask=np.zeros(num_nodes,dtype=np.bool)
val_mask=np.zeros(num_nodes,dtype=np.bool)
test_mask = np.zeros(num_nodes, dtype=np.bool)
train_mask[train_index] = True
val_mask[val_index] = True
test_mask[test_index] = True
adjacency_dict=graph
print("Node's feature shape:",x.shape)
print("Node's label shape: ", y.shape)
print("Adjacency's shape: ", len(adjacency_dict))
print("Number of training nodes: ", train_mask.sum())
print("Number of validation nodes: ", val_mask.sum())
print("Number of test nodes: ", test_mask.sum())
return Data(x=x, y=y, adjacency_dict=adjacency_dict,
train_mask=train_mask, val_mask=val_mask, test_mask=test_mask)
def maybe_download(self):
save_path = os.path.join(self.data_root, "raw")
for name in self.filenames:
if not osp.exists(osp.join(save_path, name)):
self.download_data("{}/{}".format(self.download_url, name), save_path)
@staticmethod
def build_adjacency(adj_dict):
"""根据邻接表创建邻接矩阵"""
edge_index = []
num_nodes = len(adj_dict)
for src, dst in adj_dict.items():
edge_index.extend([src, v] for v in dst)
edge_index.extend([v, src] for v in dst)
# 去除重复的边
edge_index = list(k for k, _ in itertools.groupby(sorted(edge_index)))
edge_index = np.asarray(edge_index)
adjacency = sp.coo_matrix((np.ones(len(edge_index)),(edge_index[:, 0], edge_index[:, 1])),
shape=(num_nodes, num_nodes), dtype="float32")
return adjacency
@staticmethod
def read_data(path):
"""使用不同的方式读取原始数据以进一步处理"""
name = osp.basename(path)
if name == "ind.cora.test.index":
out = np.genfromtxt(path, dtype="int64")
return out
else:
out = pickle.load(open(path, "rb"), encoding="latin1")
out = out.toarray() if hasattr(out, "toarray") else out
return out
@staticmethod
def download_data(url, save_path):
"""数据下载工具,当原始数据不存在时将会进行下载"""
# print(save_path)
if not os.path.exists(save_path):
os.makedirs(save_path)
data = urllib.request.urlopen(url)
filename = os.path.split(url)[-1]
with open(os.path.join(save_path, filename), 'wb') as f:
f.write(data.read())
# print(os.path.join(save_path, filename))
return True
# data = CoraData().data
#主函数
import torch
import numpy as np
import torch.nn as nn
import torch.optim as optim
from collections import namedtuple
#数据准备
Data = namedtuple('Data', ['x', 'y', 'adjacency_dict','train_mask', 'val_mask', 'test_mask'])
data = CoraData().data
x = data.x / data.x.sum(1, keepdims=True) # 归一化数据,使得每一行和为1
train_index = np.where(data.train_mask)[0]
train_label = data.y[train_index]
test_index = np.where(data.test_mask)[0]
#模型初始化
INPUT_DIM = 1433 # 输入维度
# Note: 采样的邻居阶数需要与GCN的层数保持一致
HIDDEN_DIM = [128, 7] # 隐藏单元节点数
NUM_NEIGHBORS_LIST = [10, 10] # 每阶采样邻居的节点数
assert len(HIDDEN_DIM) == len(NUM_NEIGHBORS_LIST)
BTACH_SIZE = 16 # 批处理大小
EPOCHS = 20
NUM_BATCH_PER_EPOCH = 20 # 每个epoch循环的批次数
LEARNING_RATE = 0.01 # 学习率
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
model = GraphSage(input_dim=INPUT_DIM, hidden_dim=HIDDEN_DIM,
num_neighbors_list=NUM_NEIGHBORS_LIST).to(DEVICE)
print(model)
criterion = nn.CrossEntropyLoss().to(DEVICE)
optimizer = optim.Adam(model.parameters(), lr=LEARNING_RATE, weight_decay=5e-4)
#模型训练和测试
def train():
model.train()
for e in range(EPOCHS):
for batch in range(NUM_BATCH_PER_EPOCH):
batch_src_index = np.random.choice(train_index, size=(BTACH_SIZE,))
batch_src_label = torch.from_numpy(train_label[batch_src_index]).long().to(DEVICE)
batch_sampling_result = multihop_sampling(batch_src_index, NUM_NEIGHBORS_LIST, data.adjacency_dict)
batch_sampling_x = [torch.from_numpy(x[idx]).float().to(DEVICE) for idx in batch_sampling_result]
batch_train_logits = model(batch_sampling_x)
loss = criterion(batch_train_logits, batch_src_label)
optimizer.zero_grad()
loss.backward() # 反向传播计算参数的梯度
optimizer.step() # 使用优化方法进行梯度更新
print("Epoch {:03d} Batch {:03d} Loss: {:.4f}".format(e, batch, loss.item()))
test()
def test():
model.eval()
with torch.no_grad():
test_sampling_result = multihop_sampling(test_index, NUM_NEIGHBORS_LIST, data.adjacency_dict)
test_x = [torch.from_numpy(x[idx]).float().to(DEVICE) for idx in test_sampling_result]
test_logits = model(test_x)
test_label = torch.from_numpy(data.y[test_index]).long().to(DEVICE)
predict_y = test_logits.max(1)[1]
accuarcy = torch.eq(predict_y, test_label).float().mean().item()
print("Test Accuracy: ", accuarcy)
train()
|