diff options
Diffstat (limited to 'bbq')
| -rw-r--r-- | bbq/CMakeLists.txt | 41 | ||||
| -rw-r--r-- | bbq/include/bbq.h | 360 | ||||
| -rw-r--r-- | bbq/src/CMakeLists.txt | 10 | ||||
| -rw-r--r-- | bbq/src/bbq.c | 1077 | ||||
| -rw-r--r-- | bbq/unittest/CMakeLists.txt | 25 | ||||
| -rw-r--r-- | bbq/unittest/ut_bbq.cc | 1189 | ||||
| -rw-r--r-- | bbq/unittest/ut_bbq_func.c | 615 | ||||
| -rw-r--r-- | bbq/unittest/ut_bbq_func.h | 302 |
8 files changed, 3619 insertions, 0 deletions
diff --git a/bbq/CMakeLists.txt b/bbq/CMakeLists.txt new file mode 100644 index 0000000..a86ea7f --- /dev/null +++ b/bbq/CMakeLists.txt @@ -0,0 +1,41 @@ +cmake_minimum_required(VERSION 3.0) +project(BBQ) + +# 头文件目录 +include_directories( + ${CMAKE_CURRENT_SOURCE_DIR}/include +) + +# 设置输出目录 +if(NOT DEFINED OUTPUT_DIR) + # 如果没有被设置,则设置一个默认值 + SET(OUTPUT_DIR ${PROJECT_SOURCE_DIR}/build/output) +endif() + +# 设置编译类型,默认Release +add_compile_options(-Wall -Wextra) + +if(NOT CMAKE_BUILD_TYPE) + set(CMAKE_BUILD_TYPE Release) +endif() + +if(CMAKE_BUILD_TYPE STREQUAL "Debug") + add_definitions(-DBBQ_MEMORY) +endif() +add_definitions(-D_GNU_SOURCE) + +# 库生成的路径 +set(LIB_PATH ${OUTPUT_DIR}/lib) +# 测试程序生成的路径 +set(EXEC_PATH ${OUTPUT_DIR}/bin) + +# 静态库的名字 +set(BBQ_LIB bbq) +# 可执行程序的名字 +set(TESTS_NAME tests) + +enable_testing() # 开启测试,否则无法执行make test + +# 添加子目录 +add_subdirectory(src) +add_subdirectory(unittest)
\ No newline at end of file diff --git a/bbq/include/bbq.h b/bbq/include/bbq.h new file mode 100644 index 0000000..9090848 --- /dev/null +++ b/bbq/include/bbq.h @@ -0,0 +1,360 @@ +/* + * @Author: [email protected] + * @LastEditTime: 2024-07-07 15:22:47 + * @Describe: bbq(Block-based Bounded Queue)头文件 + * 参考:https://www.usenix.org/system/files/atc22-wang-jiawei.pdf + */ + +#pragma once + +#include <stdbool.h> +#include <stdint.h> +#include <stdlib.h> + +#ifndef __cplusplus +// C +#include <stdatomic.h> +typedef atomic_uint_fast64_t aotmic_uint64; +#else +// C++ 为了兼容gtest测试 +using aotmic_uint64 = std::atomic<uint64_t>; +#endif + +#define BBQ_SOCKET_ID_ANY -1 +#define BBQ_SYMBOL_MAX 64 +#define BBQ_CACHE_LINE 64 +#define __BBQ_CACHE_ALIGNED __attribute__((__aligned__(BBQ_CACHE_LINE))) + +union bbq_atomic64 { + volatile uint64_t s; // single使用该字段 + aotmic_uint64 m; +}; + +struct bbq_head { + union bbq_atomic64 value; +} __BBQ_CACHE_ALIGNED; + +struct bbq_block { + union bbq_atomic64 committed; // 生产者,已提交(version|offset) + union bbq_atomic64 allocated; // 生产者,已分配(version|offset) + union bbq_atomic64 reserved; // 消费者,已预留(version|offset) + union bbq_atomic64 consumed; // 消费者,已消费(version|offset)注:在drop-old模式下没用到 + char *entries __BBQ_CACHE_ALIGNED; // 存储大小可变的entry,每个块分配空间:bs * entry_size +} __BBQ_CACHE_ALIGNED; + +typedef void *(*bbq_malloc_f)(int32_t socket_id, size_t size); +typedef void (*bbq_free_f)(void *ptr, size_t size); + +struct bbq_mempool { + char *ptr; // 内存池起始地址 + size_t off; // 已使用的偏移大小 + size_t size; // 内存池总大小 + + bbq_malloc_f malloc_f; // 申请内存的函数,默认为malloc + bbq_free_f free_f; // 申请内存的函数,默认为free +} __BBQ_CACHE_ALIGNED; + +struct bbq { + // cache line-1 + char name[BBQ_SYMBOL_MAX] __BBQ_CACHE_ALIGNED; + + // cache line-2 + int32_t socket_id; // 用于libnuma分配内存,socket_id小于0将使用malloc分配 + uint32_t bn; // blocks的个数 + uint32_t bs; // blocks.entries的个数 + uint32_t flags; // 标记:retry new 模式,还是drop old模式 + uint32_t idx_bits; // bbq_head里idx所占的位数 + uint32_t off_bits; // bbq_cursor里offset所占的位数 + uint64_t idx_mask; // idx_bits偏移后的掩码 + uint64_t off_mask; // off_bits偏移后的掩码 + uint64_t entry_size; // blocks.entries里每个entry的大小 + bool prod_single; // 如果为单生产者或单消费者,则single为true + bool cons_single; // 如果为单生产者或单消费者,则single为true + + // cache line-3 + struct bbq_head phead; // 生产者头,指向块的索引,分为两部分:version|idx + + // cache line-4 + struct bbq_head chead; // 消费者头,指向块的索引,分为两部分:version|idx + + // cache line-5 + struct { + union bbq_atomic64 n_enq; + union bbq_atomic64 n_deq; + } __BBQ_CACHE_ALIGNED stat; + + // cache line-6 + struct bbq_mempool memory_pool; // 仅在初始化和调试时会读写 + struct bbq_block *blocks; // bn大小的数组 +} __BBQ_CACHE_ALIGNED; + +#define BBQ_F_DEFAULT 0x0 + +#define BBQ_F_DROP_OLD 0x0002 /**< 创建队列时设置为drop old模式(队列满时,入队成功并覆盖旧数据) */ +#define BBQ_F_RETRY_NEW BBQ_F_DEFAULT /**< 创建队列时设置为retry new模式(队列满时,当前入队失败) */ + +#define BBQ_F_SP_ENQ 0x0004 +#define BBQ_F_MP_ENQ BBQ_F_DEFAULT +#define BBQ_F_SC_DEQ 0x0008 +#define BBQ_F_MC_DEQ BBQ_F_DEFAULT +#define BBQ_F_ENABLE_STAT 0x0010 +#define BBQ_F_DISABLE_STAT BBQ_F_DEFAULT + +/** + * 创建bbq队列,使用当前函数创建的队列,后续操作会把指针入队。 + * 对应入队函数:bbq_enqueue、bbq_enqueue_burst + * 对应出队函数:bbq_dequeue、bbq_dequeue_burst + * + * @param[in] name + * 队列名称 + * @param[in] count + * 队列大小,参数必须大于1,且是2的N次方。 + * @param[in] socket_id + * 多numa架构下,针对指定socket分配内存。 + * @param[in] flags + * 设置入队策略: + * - BBQ_F_DROP_OLD:队列满时,覆盖旧数据,入队成功 + * - BBQ_F_RETRY_NEW:队列满了当前入队失败(默认)。 + * 设置生产者模式: + * - BBQ_F_SP_ENQ:单生产者 + * - BBQ_F_MP_ENQ:多生产者(默认) + * 设置消费者模式: + * - BBQ_F_SC_DEQ:单消费者 + * - BBQ_F_MC_DEQ:多消费者(默认) + * 设置统计功能: + * 在出入队的时候同时累计成功次数,并推算出当前队列的剩余个数。注:目前仅retry new模式下支持统计功能 + * - BBQ_F_ENABLE_STAT:开启统计功能 + * - BBQ_F_DISABLE_STAT:关闭统计功能(默认) + * @return + * 非NULL:消息队列结构体指针,用于后续出队入队等操作。 + * NULL:创建失败,可能存在的原因: + * - name或count参数超出范围 + * - 申请内存失败 + * - count不为2的n次方 + * - name传入空指针 + * - drop old模式下不支持 + */ +extern struct bbq *bbq_create(const char *name, uint32_t count, int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f); + +/** + * 消息队列单个指针入队 + * + * @param[in] q + * 队列指针 + * @param[in] data + * 指向入队指针的指针,如: + * int *data = malloc(sizeof(int));*data = TEST_DATA; 传入&data + * @return + * 成功返回0,失败返回小于0的错误码: + * - BBQ_ERR_INPUT_NULL:传入空指针 + * - BBQ_ERR_FULL:队列已满 + * - BBQ_ERR_BUSY:队列忙碌中 + * - BBQ_ERR:其它错误 + */ +extern int bbq_enqueue(struct bbq *q, void *const *data); + +/** + * 消息队列单个指针出队 + * + * @param[in] q + * 队列指针 + * @param[out] data + * 传入二级指针,如: + * int *data = NULL; 传入&data + * @return + * 成功返回0,失败返回小于0的错误码: + * - BBQ_ERR_INPUT_NULL:传入空指针 + * - BBQ_ERR_EMPTY:队列已空 + * - BBQ_ERR_BUSY:队列忙碌中 + * - BBQ_ERR:其它错误 + */ +extern int bbq_dequeue(struct bbq *q, void **data); + +/** + * 消息队列批量入队(指针入队),尽可能一次入队n个指针,返回实际成功入队个数 + * + * @param[in] q + * 队列指针 + * @param[in] obj_table + * 即将入队的指针数组,如: + * uint16_t **obj_table = malloc(sizeof(uint16_t **) * BUF_CNT); + * for(int i=0;i<BUF_CNT;i++){ + * obj_table[i] = malloc(sizeof(uint16_t)); + * obj_table[i] = TEST_DATA; + * } + * 传入obj_table + * @param[in] n + * 尝试一次入队的个数 + * @param[out] wait_consumed + * 如果为非NULL,返回当前队列剩余的个数。注:该赋值可能会带来些许的性能损耗。 + * @return + * 返回实际成功入队的个数。如果始终返回0,可能存在的错误原因: + * - 传入空指针 + * - 队列已满 + * - 队列忙碌中 + */ +extern uint32_t bbq_enqueue_burst(struct bbq *q, void *const *obj_table, uint32_t n, uint32_t *wait_consumed); + +/** + * 消息队列批量指针出队,尽可能一次出队n个数据,返回实际成功出队个数 + * + * @param[in] q + * 队列指针 + * @param[out] obj_table + * 用于存储出队的指针,如: + * uint16_t **obj_table = malloc(sizeof(uint16_t *)); 传入obj_table + * @param[in] n + * 尝试一次出队的个数 + * @param[out] wait_consumed + * 如果为非NULL,返回当前队列中,已入队的个数。注:该赋值可能会带来些许的性能损耗 + * @return + * 返回实际出队的个数,如果始终返回0,可能存在的原因: + * - 传入空指针 + * - 队列已空 + * - 队列忙碌中 + */ +extern uint32_t bbq_dequeue_burst(struct bbq *q, void **obj_table, uint32_t n, uint32_t *wait_consumed); + +/** + * 创建bbq队列,使用当前函数创建的队列,在后续操作会把指针指向的数据拷贝入队。 + * 对应入队函数:bbq_enqueue_elem、bbq_enqueue_burst_elem + * 对应出队函数:bbq_dequeue_elem、bbq_dequeue_burst_elem + * + * @param[in] name + * 队列名称 + * @param[in] count + * 队列大小,参数必须大于1,且是2的N次方。 + * @param[in] socket_id + * 多numa架构下,针对指定socket分配内存。 + * @param[in] flags + * 设置入队策略: + * - BBQ_F_DROP_OLD:队列满时,覆盖旧数据,入队成功 + * - BBQ_F_RETRY_NEW:队列满了当前入队失败(默认)。 + * 设置生产者模式: + * - BBQ_F_SP_ENQ:单生产者 + * - BBQ_F_MP_ENQ:多生产者(默认) + * 设置消费者模式: + * - BBQ_F_SC_DEQ:单消费者 + * - BBQ_F_MC_DEQ:多消费者(默认) + * 设置统计功能: + * 在出入队的时候同时累计成功次数,并推算出当前队列的剩余个数。注:目前仅retry new模式下支持统计功能 + * - BBQ_F_ENABLE_STAT:开启统计功能 + * - BBQ_F_DISABLE_STAT:关闭统计功能(默认) + * @return + * 非NULL:消息队列结构体指针,用于后续出队入队等操作。 + * NULL:创建失败。可能存在的错误原因: + * - name或count参数超出范围 + * - 申请内存失败 + * - count不为2的n次方 + * - name传入空指针 + * - drop old模式下不支持 + */ +extern struct bbq *bbq_create_elem(const char *name, uint32_t count, size_t obj_size, + int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f); + +/** + * 消息队列单个数据入队(指针指向的数据将被拷贝) + * + * @param[in] q + * 队列指针 + * @param[in] data + * 传入一级指针,如:int data = 1; 传入&data + * @return + * 成功返回0,失败返回小于0的错误码: + * - BBQ_ERR_INPUT_NULL:传入空指针 + * - BBQ_ERR_FULL:队列已满 + * - BBQ_ERR_BUSY:队列忙碌中 + * - BBQ_ERR:其它错误 + */ +extern int bbq_enqueue_elem(struct bbq *q, void const *data); + +/** + * 消息队列单个数据出队 + * + * @param[in] q + * 队列指针 + * @param[in] data + * 则传入一级指针,如:int data; 传入&data + * @return + * 成功返回0,失败返回小于0的错误码: + * - BBQ_ERR_INPUT_NULL:传入空指针 + * - BBQ_ERR_EMPTY:队列已空 + * - BBQ_ERR_BUSY:队列忙碌中 + * - BBQ_ERR:其它错误 + */ +extern int bbq_dequeue_elem(struct bbq *q, void *data); + +/** + * 消息队列批量入队(数据入队),尽可能一次入队n个数据,返回实际成功入队个数 + * + * @param[in] q + * 队列指针 + * @param[in] obj_table + * 将数组里的每个数据入队,如: + * uint16_t obj_table[1024] = {初始化数据}; 传入obj_table + * @param[in] n + * 尝试一次入队的个数 + * @param[out] wait_consumed + * 如果为非NULL,返回当前队列中,已入队的个数。。注:该赋值可能会带来些许的性能损耗 + * @return + * 返回实际成功入队的个数。如果始终返回0,可能存在的错误原因: + * - 传入空指针 + * - 队列已满 + * - 队列忙碌中 + */ +extern uint32_t bbq_enqueue_burst_elem(struct bbq *q, void const *obj_table, uint32_t n, uint32_t *wait_consumed); + +/** + * 消息队列批量出队(数据出队),尽可能一次出队n个数据,返回实际成功出队个数 + * + * @param[in] q + * 队列指针 + * @param[out] obj_table + * 存储出队的数据,如: + * uint16_t obj_table[BUF_CNT] = {0}; 传入(void *)obj_table + * @param[in] n + * 尝试一次出队的个数 + * @param[out] wait_consumed + * 如果为非NULL,返回当前队列中,已入队的个数。注:该赋值可能会带来些许的性能损耗 + * @return + * 返回实际出队的个数,如果始终返回0,可能存在的原因: + * - 传入空指针 + * - 队列已空 + * - 队列忙碌中 + */ +extern uint32_t bbq_dequeue_burst_elem(struct bbq *q, void *obj_table, uint32_t n, uint32_t *wait_consumed); + +/** + * 用于释放消息队列。 + * + * @param[in] q + * 队列指针 + * @return + * - true: 队列为空返回 + * - false: 队列非空 + */ +bool bbq_empty(struct bbq *q); + +/** + * 用于释放消息队列。 + * + * @param[in] q + * 队列指针 + */ +extern void bbq_destory(struct bbq *q); + +// 错误码 +#define BBQ_OK 0 // 成功 +#define BBQ_ERR -1 // 通用错误,无法分类时使用 +#define BBQ_ERR_ALLOC -2 // 内存分配失败 +#define BBQ_ERR_INPUT_NULL -3 // 传入空指针 +#define BBQ_ERR_POWER_OF_TWO -4 // 不是2的n次方 +#define BBQ_ERR_OUT_OF_RANGE -5 // 超出范围 +#define BBQ_ERR_STAT_NOT_SUPPORT -6 // 不支持统计 + +#define BBQ_ERR_FULL -101 // 队列已满(入队失败) +#define BBQ_ERR_BUSY -102 // 队列忙碌中(入队或出队失败) +#define BBQ_ERR_EMPTY -103 // 队列已空(出队失败) +#define BBQ_ERR_NOT_SUPPORT -104 // 不支持的操作
\ No newline at end of file diff --git a/bbq/src/CMakeLists.txt b/bbq/src/CMakeLists.txt new file mode 100644 index 0000000..fa91e18 --- /dev/null +++ b/bbq/src/CMakeLists.txt @@ -0,0 +1,10 @@ +cmake_minimum_required(VERSION 3.0) +project(BBQ_LIB) + +file(GLOB SRC_LIST ${CMAKE_CURRENT_SOURCE_DIR}/*.c) #搜索当前cmake所在目录下的c文件 +set(LIBRARY_OUTPUT_PATH ${LIB_PATH}) #设置库生成目录 + +add_library(${BBQ_LIB} STATIC ${SRC_LIST}) #生成静态库 +# add_library(${BBQ_LIB} SHARED ${SRC_LIST}) #生成动态库 + +target_link_libraries(${BBQ_LIB} numa) # 链接库 diff --git a/bbq/src/bbq.c b/bbq/src/bbq.c new file mode 100644 index 0000000..0ae6c5d --- /dev/null +++ b/bbq/src/bbq.c @@ -0,0 +1,1077 @@ +/* + * @Author: liuyu + * @LastEditTime: 2024-07-07 17:44:50 + * @Email: [email protected] + * @Describe: bbq(Block-based Bounded Queue)实现 + * 参考:https://www.usenix.org/system/files/atc22-wang-jiawei.pdf + */ +#include "bbq.h" +#include <math.h> +#include <string.h> + +// flags第1位控制入队时的数据拷贝策略,默认是"拷贝指针" +#define BBQ_F_COPY_PTR BBQ_F_DEFAULT /**< 默认为拷贝指针 */ +#define BBQ_F_COPY_VALUE 0x0001 /**< 创建队列时设置为拷贝数值 */ + +// 判断flags标记位 +#define BBQ_F_CHK_DROP_OLD(flags) (flags & BBQ_F_DROP_OLD) +#define BBQ_F_CHK_COPY_VALUE(flags) (flags & BBQ_F_COPY_VALUE) +#define BBQ_F_CHK_SP_ENQ(flags) (flags & BBQ_F_SP_ENQ) +#define BBQ_F_CHK_SC_DEQ(flags) (flags & BBQ_F_SC_DEQ) +#define BBQ_F_CHK_STAT_ENABLE(flags) (flags & BBQ_F_ENABLE_STAT) + +// 避免无用参数的编译告警 +#define AVOID_WARNING(param) ((void)param) + +// 在Debug编译时,BBQ_MEMORY宏定义开关被打开,将在每个块的末尾多分配一个entry,值为BBQ_MEM_MAGIC,方便排查越界问题。 +#ifdef BBQ_MEMORY +#define BBQ_MEM_MAGIC 0xFE +#endif + +#define bbq_likely(x) __builtin_expect(!!(x), 1) +#define bbq_unlikely(x) __builtin_expect(!!(x), 0) + +struct bbq_status { + int32_t status; // 返回状态 + uint32_t actual_burst; // 实际出/入队个数 +}; + +enum bbq_queue_state { + BBQ_SUCCESS = 0, + BBQ_BLOCK_DONE, // 当前块的entry已用完,需要移动到下一个块 + BBQ_NO_ENTRY, // 队列里没有entry可以使用了 + BBQ_NOT_AVAILABLE, // 当前块不可以用状态(将返回busy) + BBQ_ALLOCATED, // 已分配,返回entry信息 + BBQ_RESERVED, // 已保留,返回entry信息 +}; + +struct bbq_entry_desc { + uint64_t vsn; // allocated或reserved的版本(vsn) + uint64_t off; // entry在当前块的偏移(offset) + uint32_t actual_burst; // 实际出/入队个数 + struct bbq_block *block; // 指向所在的块 +}; + +struct bbq_queue_state_s { + enum bbq_queue_state state; // 队列状态 + union { + uint64_t vsn; // bbq_reserve_entry state==BLOCK_DONE时生效 + struct bbq_entry_desc e; // state为ALLOCATED、RESERVED生效 + }; +}; + +extern inline uint64_t bbq_head_idx(struct bbq *q, uint64_t x) { + return x & q->idx_mask; +} + +extern inline uint64_t bbq_head_vsn(struct bbq *q, uint64_t x) { + return x >> q->idx_bits; +} + +extern inline uint64_t bbq_cur_off(struct bbq *q, uint64_t x) { + return x & q->off_mask; +} + +extern inline uint64_t bbq_cur_vsn(struct bbq *q, uint64_t x) { + return x >> q->off_bits; +} + +static inline uint64_t bbq_set_cur_vsn(struct bbq *q, uint64_t ver) { + return ver << q->off_bits; +} + +extern inline uint64_t bbq_atomic64_load(union bbq_atomic64 *atomic, bool single) { + if (single) { + return atomic->s; + } else { + return atomic_load(&atomic->m); + } +} + +extern inline void bbq_atomic64_store(union bbq_atomic64 *atomic, uint64_t value, bool single) { + if (single) { + atomic->s = value; + } else { + atomic_store(&atomic->m, value); + } +} +static inline uint64_t bbq_atomic64_fetch_add(union bbq_atomic64 *atomic, uint64_t value, bool single) { + if (single) { + uint64_t old = atomic->s; + atomic->s += value; + return old; + } else { + return atomic_fetch_add(&atomic->m, value); + } +} + +/* 原子的比较两个值大小,并设置较大的值,成功则返回设置前的旧值 */ +uint64_t bbq_fetch_max(union bbq_atomic64 *atomic, uint64_t upd, bool single) { + uint64_t old_value = 0; + + if (single) { + old_value = atomic->s; + atomic->s = upd; + } else { + do { + old_value = atomic_load(&atomic->m); + } while (old_value < upd && !atomic_compare_exchange_weak(&atomic->m, &old_value, upd)); + } + + return old_value; +} + +/* 检查参数是否为2的N次幂 */ +bool bbq_check_power_of_two(uint32_t n) { + if (n == 0) { + return false; + } + + return (n & (n - 1)) == 0; +} + +/* 根据entries大小返回合理的block个数 + * 计算公式:log2(blocks) = max(1, ⌊log2(count)/4⌋) 注:⌊ ⌋代表向下取整。*/ +static uint32_t bbq_block_number_calc(uint32_t entries) { + double log_entries = log2((double)entries); + uint32_t over4 = (uint32_t)(log_entries / 4); // 向下取整 + uint32_t max_value = (over4 > 1) ? over4 : 1; + uint32_t n = pow(2, max_value); + + return n; +} + +/* 根据entries大小返回合理的bn、bs*/ +int bbq_bnbs_calc(uint32_t entries, uint32_t *bn, uint32_t *bs) { + if (bn == NULL || bs == NULL) { + return BBQ_ERR_INPUT_NULL; + } + + if (entries <= 1) { + return BBQ_ERR_OUT_OF_RANGE; + } + + if (bbq_check_power_of_two(entries) == false) { + return BBQ_ERR_POWER_OF_TWO; + } + + *bn = bbq_block_number_calc(entries); + *bs = entries / *bn; + + return BBQ_OK; +} + +void *bbq_malloc_from_pool(struct bbq *q, size_t size) { + if (q->memory_pool.size - q->memory_pool.off < size) { + return NULL; + } + + char *mem = q->memory_pool.ptr + q->memory_pool.off; + q->memory_pool.off += size; + + return mem; +} + +/* 块初始化 */ +int block_init(struct bbq *q, struct bbq_block *block, bool cursor_init) { + size_t size = 0; + +#ifdef BBQ_MEMORY + // 末尾多分配一个entry,它永远不应该被修改,以此检查是否存在写越界的问题 + size = (q->bs + 1) * q->entry_size; + block->entries = bbq_malloc_from_pool(q, size); + char *last_entry = block->entries + q->entry_size * q->bs; + memset(block->entries, 0, size); + memset(last_entry, BBQ_MEM_MAGIC, q->entry_size); +#else + size = q->bs * q->entry_size; + block->entries = bbq_malloc_from_pool(q, size); + memset(block->entries, 0, size); +#endif + + if (block->entries == NULL) { + return BBQ_ERR_ALLOC; + } + + if (cursor_init) { + // block数组里,除了第一块之外需要设置 + bbq_atomic64_store(&block->committed, q->bs, q->prod_single); + bbq_atomic64_store(&block->allocated, q->bs, q->prod_single); + bbq_atomic64_store(&block->reserved, q->bs, q->cons_single); + if (!BBQ_F_CHK_DROP_OLD(q->flags)) { + bbq_atomic64_store(&block->consumed, q->bs, q->cons_single); + } + } + + return BBQ_OK; +} + +/* 块清理函数,与block_init成对*/ +void block_destory(struct bbq *q, struct bbq_block *block) { + if (block->entries) { +#ifdef BBQ_MEMORY + q->memory_pool.free_f(block->entries, (q->bs + 1) * q->entry_size); +#else + q->memory_pool.free_f(block->entries, q->bs * q->entry_size); +#endif + block->entries = NULL; + } +} + +/* +求x在二进制表示中最高位1所在的位置,x参数不能为0。 +例如:x=1,return 0 (...1); x=3,return 1 (..11); x=9,return 3 (1..1) +*/ +static unsigned bbq_floor_log2(uint64_t x) { + return x == 1 ? 0 : 1 + bbq_floor_log2(x >> 1); +} + +/* +返回以2为底x的对数,并向上取整值。 +例如:x=1,return 0 (2^0=1); x=99, return 7(2^6=64 2^7=128) +*/ +static unsigned bbq_ceil_log2(uint64_t x) { + return x == 1 ? 0 : bbq_floor_log2(x - 1) + 1; +} + +/* 创建消息队列,bn和bs必须是2的N次幂,socket_id用于多numa分配内存 */ +static struct bbq *__bbq_create_bnbs(const char *name, uint32_t bn, uint32_t bs, + size_t obj_size, int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f) { + int ret = 0; + size_t size = 0; + if (bbq_check_power_of_two(bn) == false) { + return NULL; + } + + if (bbq_check_power_of_two(bs) == false) { + return NULL; + } + + if (name == NULL) { + return NULL; + } + + if (strlen(name) >= BBQ_SYMBOL_MAX - 1 || obj_size == 0) { + return NULL; + } + + if (BBQ_F_CHK_DROP_OLD(flags) && BBQ_F_CHK_STAT_ENABLE(flags)) { + return NULL; + } + + if (malloc_f == NULL || free_f == NULL) { + return NULL; + } + + uint32_t all_size = 0; +#ifdef BBQ_MEMORY + all_size = sizeof(struct bbq) + bn * sizeof(struct bbq_block) + bn * (bs + 1) * obj_size; +#else + all_size = sizeof(struct bbq) + bn * sizeof(struct bbq_block) + bn * bs * obj_size; +#endif + struct bbq *q = malloc_f(socket_id, all_size); + if (q == NULL) { + return NULL; + } + + memset(q, 0, all_size); + q->memory_pool.size = all_size; + q->memory_pool.ptr = (char *)q; + q->memory_pool.off += sizeof(struct bbq); + q->memory_pool.malloc_f = malloc_f; + q->memory_pool.free_f = free_f; + q->bn = bn; + q->bs = bs; + q->entry_size = obj_size; + q->socket_id = socket_id; + strncpy(q->name, name, sizeof(q->name) - 1); + q->name[sizeof(q->name) - 1] = '\0'; + + if (BBQ_F_CHK_SP_ENQ(flags)) { + q->prod_single = true; + } + if (BBQ_F_CHK_SC_DEQ(flags)) { + q->cons_single = true; + } + q->flags = flags; + + size = bn * sizeof(*q->blocks); + q->blocks = bbq_malloc_from_pool(q, size); + if (q->blocks == NULL) { + goto error; + } + memset(q->blocks, 0, size); + + for (uint32_t i = 0; i < bn; ++i) { + ret = block_init(q, &(q->blocks[i]), (i == 0 ? false : true)); + if (ret != BBQ_OK) { + goto error; + } + } + + q->idx_bits = bbq_ceil_log2(bn); + uint32_t off_bits = bbq_ceil_log2(bs); + if (off_bits < 13) { + off_bits = 13; + } + q->off_bits = off_bits; // 多线程同时FAA,可能会超过最大索引,因此多分配一些空间,防止FAA溢出 TODO:多少合适?ver溢出问题? + + q->idx_mask = (1 << q->idx_bits) - 1; + q->off_mask = (1 << q->off_bits) - 1; + + return q; + +error: + bbq_destory(q); + return NULL; +} + +/* 使用自定义的bn、bs创建指针入队的bbq,一般用于单元测试 */ +struct bbq *bbq_create_with_bnbs(const char *name, uint32_t bn, uint32_t bs, + int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f) { + return __bbq_create_bnbs(name, bn, bs, sizeof(void *), socket_id, flags | BBQ_F_COPY_PTR, malloc_f, free_f); +} + +/* 使用自定义的bn、bs创建值入队的bbq,一般用于单元测试 */ +struct bbq *bbq_create_elem_with_bnbs(const char *name, uint32_t bn, uint32_t bs, + size_t obj_size, int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f) { + return __bbq_create_bnbs(name, bn, bs, obj_size, socket_id, flags | BBQ_F_COPY_VALUE, malloc_f, free_f); +} + +/* 创建消息队列,count必须大于1,且是2的N次幂,bn和bs将根据count值自动计算,socket_id用于多numa分配内存,free_func先设置NULL */ +struct bbq *bbq_create_elem(const char *name, uint32_t count, size_t obj_size, + int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f) { + uint32_t bn = 0; + uint32_t bs = 0; + + if (bbq_bnbs_calc(count, &bn, &bs) != BBQ_OK) { + return NULL; + } + + return __bbq_create_bnbs(name, bn, bs, obj_size, socket_id, flags | BBQ_F_COPY_VALUE, malloc_f, free_f); +} + +struct bbq *bbq_create(const char *name, uint32_t count, int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f) { + uint32_t bn = 0; + uint32_t bs = 0; + + if (bbq_bnbs_calc(count, &bn, &bs) != BBQ_OK) { + return NULL; + } + + return __bbq_create_bnbs(name, bn, bs, sizeof(void *), socket_id, flags | BBQ_F_COPY_PTR, malloc_f, free_f); +} + +/* 释放消息队列,与bbq_ring_create系列接口成对*/ +void bbq_destory(struct bbq *q) { + if (q == NULL) { + return; + } + + q->memory_pool.free_f(q->memory_pool.ptr, q->memory_pool.size); +} + +#define BBQ_DATA_TYPE_SINGLE 0x0 +#define BBQ_DATA_TYPE_1D_ARRAY 0x1 +#define BBQ_DATA_TYPE_2D_ARRAY 0x2 +void bbq_commit_entry(struct bbq *q, struct bbq_entry_desc *e, void const *data, uint32_t data_type) { + size_t idx = e->off * q->entry_size; + + if (BBQ_F_CHK_COPY_VALUE(q->flags)) { + // 数据入队列 + switch (data_type) { + case BBQ_DATA_TYPE_1D_ARRAY: + case BBQ_DATA_TYPE_SINGLE: + memcpy(&(e->block->entries[idx]), data, q->entry_size * e->actual_burst); + break; + case BBQ_DATA_TYPE_2D_ARRAY: { + void **tmp = (void **)data; + char *entry = &(e->block->entries[idx]); + for (size_t i = 0; i < e->actual_burst; i++) { + memcpy(entry, *tmp, q->entry_size); + entry += q->entry_size; + tmp++; + } + break; + } + default: + break; + } + } else { + // 指针入队列 + switch (data_type) { + case BBQ_DATA_TYPE_2D_ARRAY: + case BBQ_DATA_TYPE_SINGLE: + // 二维数组名等于首成员的地址,这里data其实是void **data, &data等同于 &(data[0]) + memcpy(&(e->block->entries[idx]), data, q->entry_size * e->actual_burst); + break; + case BBQ_DATA_TYPE_1D_ARRAY: + default: + break; + } + } + bbq_atomic64_fetch_add(&e->block->committed, e->actual_burst, q->prod_single); +} + +struct bbq_queue_state_s bbq_allocate_entry(struct bbq *q, uint64_t ph, uint32_t n) { + struct bbq_queue_state_s state = {0}; + uint64_t ph_idx = bbq_head_idx(q, ph); + bool prod_single = q->prod_single; + + struct bbq_block *block = &(q->blocks[ph_idx]); + if (bbq_cur_off(q, bbq_atomic64_load(&block->allocated, prod_single)) >= q->bs) { + state.state = BBQ_BLOCK_DONE; + return state; + } + + uint64_t old = bbq_atomic64_fetch_add(&block->allocated, n, prod_single); + uint64_t cur_vsn = bbq_cur_vsn(q, old); + uint64_t cur_off = bbq_cur_off(q, old); + + if (cur_off >= q->bs) { + state.state = BBQ_BLOCK_DONE; + return state; + } + + if (cur_off + n <= q->bs) { + // 可以全部入队 + state.e.actual_burst = n; + } else { + // 部分入队 + state.e.actual_burst = q->bs - cur_off; + } + state.e.block = block; + state.e.vsn = cur_vsn; + state.e.off = cur_off; + state.state = BBQ_ALLOCATED; + + return state; +} + +enum bbq_queue_state advance_phead(struct bbq *q, uint64_t ph) { + uint64_t cur = 0; + // 获取下一个block + struct bbq_block *n_blk = &(q->blocks[(bbq_head_idx(q, ph) + 1) & q->idx_mask]); + uint64_t ph_vsn = bbq_head_vsn(q, ph); + bool prod_single = q->prod_single; + bool cons_single = q->cons_single; + + if (BBQ_F_CHK_DROP_OLD(q->flags)) { + cur = bbq_atomic64_load(&n_blk->committed, prod_single); + // 生产者head避免覆盖上一轮尚未完全提交的区块 + if (bbq_cur_vsn(q, cur) == ph_vsn && bbq_cur_off(q, cur) != q->bs) { + return BBQ_NOT_AVAILABLE; + } + } else { + cur = bbq_atomic64_load(&n_blk->consumed, cons_single); + uint64_t reserved; + uint64_t consumed_off = bbq_cur_off(q, cur); + uint64_t consumed_vsn = bbq_cur_vsn(q, cur); + + if (consumed_vsn < ph_vsn || + (consumed_vsn == ph_vsn && consumed_off != q->bs)) { + // 生产者赶上了消费者 + reserved = bbq_atomic64_load(&n_blk->reserved, cons_single); + if (bbq_cur_off(q, reserved) == consumed_off) { + return BBQ_NO_ENTRY; + } else { + return BBQ_NOT_AVAILABLE; + } + } + } + + // 用head的version值初始化下一个块,version在高位,version+1,index或offset也会被清零 + uint64_t new_vsn = bbq_set_cur_vsn(q, ph_vsn + 1); + // 其他线程完成了head更新,当前bbq_fetch_max不会再更新,可能在以下两种情况: + // 1)实际ph_vsn与本次要更新的ph_vsn相同。 + // 2)当前ph_vsn已经落后于实际的ph_vsn(且移动到了下一轮), + bbq_fetch_max(&n_blk->committed, new_vsn, prod_single); + bbq_fetch_max(&n_blk->allocated, new_vsn, prod_single); + + // ph+1,当超过索引范围,进入下一轮时,version会自动+1 + bbq_fetch_max(&q->phead.value, ph + 1, prod_single); + return BBQ_SUCCESS; +} + +bool bbq_empty(struct bbq *q) { + return bbq_atomic64_load(&q->stat.n_enq, q->prod_single) == bbq_atomic64_load(&q->stat.n_deq, q->cons_single); +} + +static uint32_t bbq_wait_consumed_get(struct bbq *q, uint64_t enq_update, uint64_t deq_update) { + uint64_t enq_now = 0; + uint64_t deq_now = 0; + + if (enq_update == 0) { + enq_now = bbq_atomic64_load(&q->stat.n_enq, q->prod_single); + } else { + enq_now = enq_update; + } + + if (deq_update == 0) { + deq_now = bbq_atomic64_load(&q->stat.n_deq, q->cons_single); + } else { + deq_now = deq_update; + } + + return enq_now - deq_now; +} + +/* 消息队列入队 */ +static struct bbq_status __bbq_enqueue(struct bbq *q, void const *data, + uint32_t n, uint32_t data_type, + uint32_t *wait_consumed) { + uint64_t enq_update = 0; + struct bbq_status ret = {.status = 0, .actual_burst = 0}; + bool prod_single = q->prod_single; + + if (bbq_unlikely(q == NULL || data == NULL)) { + ret.status = BBQ_ERR_INPUT_NULL; + return ret; + } + + while (true) { + uint64_t ph = bbq_atomic64_load(&q->phead.value, prod_single); + struct bbq_queue_state_s state = bbq_allocate_entry(q, ph, n); + + switch (state.state) { + case BBQ_ALLOCATED: + bbq_commit_entry(q, &state.e, data, data_type); + ret.actual_burst = state.e.actual_burst; + ret.status = BBQ_OK; + + if (BBQ_F_CHK_STAT_ENABLE(q->flags)) { + enq_update = bbq_atomic64_fetch_add(&q->stat.n_enq, state.e.actual_burst, prod_single) + + state.e.actual_burst; + } + break; + case BBQ_BLOCK_DONE: { + enum bbq_queue_state pstate = advance_phead(q, ph); + if (pstate == BBQ_SUCCESS) { + continue; + } + + if (pstate == BBQ_NO_ENTRY) { + ret.status = BBQ_ERR_FULL; + } else if (pstate == BBQ_NOT_AVAILABLE) { + ret.status = BBQ_ERR_BUSY; + } else { + ret.status = BBQ_ERR; + } + + break; + } + default: + ret.status = BBQ_ERR; + break; + } + + if (BBQ_F_CHK_STAT_ENABLE(q->flags) && wait_consumed != NULL) { + *wait_consumed = bbq_wait_consumed_get(q, enq_update, 0); + } + + return ret; + } +} + +int bbq_enqueue(struct bbq *q, void *const *data) { + struct bbq_status ret = __bbq_enqueue(q, data, 1, BBQ_DATA_TYPE_SINGLE, NULL); + return ret.status; +} + +int bbq_enqueue_elem(struct bbq *q, void const *data) { + struct bbq_status ret = __bbq_enqueue(q, data, 1, BBQ_DATA_TYPE_SINGLE, NULL); + return ret.status; +} + +/* 更新reserved,成功则返回更新的个数 */ +uint32_t bbq_reserve_update(union bbq_atomic64 *atomic, uint64_t reserved, uint32_t n, bool single) { + if (single) { + atomic->s += n; + return n; + } else { + // 不能用fetch_max,比如a线程burst2,b线程burst3,a更新成功,b也更新成功。 + bool ret = atomic_compare_exchange_weak(&atomic->m, &reserved, reserved + n); + return ret == true ? n : 0; + } +} + +struct bbq_queue_state_s bbq_reserve_entry(struct bbq *q, struct bbq_block *block, uint32_t n) { + uint32_t cont = 0; + bool prod_single = q->prod_single; + bool cons_single = q->cons_single; + + while (true) { + struct bbq_queue_state_s state; + uint64_t reserved = bbq_atomic64_load(&block->reserved, cons_single); + uint64_t reserved_off = bbq_cur_off(q, reserved); + uint64_t reserved_svn = bbq_cur_vsn(q, reserved); + + if (reserved_off < q->bs) { + uint64_t committed = bbq_atomic64_load(&block->committed, prod_single); + uint64_t committed_off = bbq_cur_off(q, committed); + if (committed_off == reserved_off) { + state.state = BBQ_NO_ENTRY; + return state; + } + + // 当前块的数据没有被全部commited,需要通过判断allocated和committed来判断是否存在正在入队进行中的数据 + if (committed_off != q->bs) { + uint64_t allocated = bbq_atomic64_load(&block->allocated, prod_single); + if (bbq_cur_off(q, allocated) != committed_off) { + state.state = BBQ_NOT_AVAILABLE; + return state; + } + } + + uint32_t tmp = committed_off - reserved_off; + uint32_t reserved_cnt = bbq_reserve_update(&block->reserved, reserved, tmp < n ? tmp : n, q->cons_single); + if (reserved_cnt > 0) { + state.state = BBQ_RESERVED; + state.e.actual_burst = reserved_cnt; + state.e.block = block; + state.e.off = reserved_off; + state.e.vsn = reserved_svn; + + return state; + } else { + // 已经被其他线程更新过了,当前数据为旧数据,需要重新获取 + cont++; + continue; + } + } + + state.state = BBQ_BLOCK_DONE; + state.vsn = reserved_svn; + return state; + } +} + +bool consume_entry(struct bbq *q, struct bbq_entry_desc *e, void *deq_data, uint32_t data_type) { + size_t idx = e->off * q->entry_size; + bool prod_single = q->prod_single; + bool cons_single = q->cons_single; + + if (BBQ_F_CHK_COPY_VALUE(q->flags)) { + switch (data_type) { + case BBQ_DATA_TYPE_1D_ARRAY: + case BBQ_DATA_TYPE_SINGLE: + memcpy(deq_data, &(e->block->entries[idx]), q->entry_size * e->actual_burst); + break; + case BBQ_DATA_TYPE_2D_ARRAY: { + void **tmp = (void **)deq_data; + char *entry = &(e->block->entries[idx]); + for (size_t i = 0; i < e->actual_burst; i++) { + memcpy(*tmp, entry, q->entry_size); + entry += q->entry_size; + tmp++; + } + break; + } + default: + break; + } + } else { + switch (data_type) { + case BBQ_DATA_TYPE_2D_ARRAY: + case BBQ_DATA_TYPE_SINGLE: + memcpy(deq_data, &(e->block->entries[idx]), q->entry_size * e->actual_burst); + break; + case BBQ_DATA_TYPE_1D_ARRAY: + default: + break; + } + } + + uint64_t allocated; + if (BBQ_F_CHK_DROP_OLD(q->flags)) { + // TODO:优化,考虑allocated vsn溢出?考虑判断如果生产满了,直接移动head? + allocated = bbq_atomic64_load(&e->block->allocated, prod_single); + // 预留的entry所在的块,已经被新生产的数据赶上了 + if (bbq_cur_vsn(q, allocated) != e->vsn) { + return false; + } + } else { + bbq_atomic64_fetch_add(&e->block->consumed, e->actual_burst, cons_single); + } + + return true; +} + +bool advance_chead(struct bbq *q, uint64_t ch, uint64_t ver) { + uint64_t ch_idx = bbq_head_idx(q, ch); + struct bbq_block *n_blk = &(q->blocks[(ch_idx + 1) & q->idx_mask]); + bool prod_single = q->prod_single; + bool cons_single = q->cons_single; + uint64_t ch_vsn = bbq_head_vsn(q, ch); + uint64_t committed = bbq_atomic64_load(&n_blk->committed, prod_single); + uint64_t committed_vsn = bbq_cur_vsn(q, committed); + + if (BBQ_F_CHK_DROP_OLD(q->flags)) { + // 通过检查下一个块的版本是否大于或等于当前块来保证 FIFO 顺序. + // 第一个块是一个特殊情况,因为与其他块相比,它的版本总是相差一个。因此,如果 ch_idx == 0,我们在比较中加 1 + if (committed_vsn < ver + (ch_idx == 0)) { + return false; + } + + bbq_fetch_max(&n_blk->reserved, bbq_set_cur_vsn(q, committed_vsn), cons_single); + } else { + if (committed_vsn != ch_vsn + 1) { + // 消费者追上了生产者,下一块还未开始生产 + return false; + } + uint64_t new_vsn = bbq_set_cur_vsn(q, ch_vsn + 1); + bbq_fetch_max(&n_blk->consumed, new_vsn, cons_single); + bbq_fetch_max(&n_blk->reserved, new_vsn, cons_single); + } + + bbq_fetch_max(&q->chead.value, ch + 1, cons_single); + return true; +} + +/* 消息队列出队 */ +static struct bbq_status __bbq_dequeue(struct bbq *q, void *deq_data, uint32_t n, uint32_t data_type, uint32_t *wait_consumed) { + uint64_t deq_update = 0; + bool cons_single = q->cons_single; + struct bbq_status ret = {.status = 0, .actual_burst = 0}; + if (bbq_unlikely(q == NULL || deq_data == NULL)) { + ret.status = BBQ_ERR_INPUT_NULL; + return ret; + } + + while (true) { + uint64_t ch = bbq_atomic64_load(&q->chead.value, cons_single); + struct bbq_block *blk = &(q->blocks[bbq_head_idx(q, ch)]); + struct bbq_queue_state_s state; + state = bbq_reserve_entry(q, blk, n); + + switch (state.state) { + case BBQ_RESERVED: + if (!consume_entry(q, &state.e, deq_data, data_type)) { + continue; + } + ret.status = BBQ_OK; + ret.actual_burst = state.e.actual_burst; + + if (BBQ_F_CHK_STAT_ENABLE(q->flags)) { + deq_update = bbq_atomic64_fetch_add(&q->stat.n_deq, state.e.actual_burst, cons_single) + + state.e.actual_burst; + } + break; + case BBQ_NO_ENTRY: + ret.status = BBQ_ERR_EMPTY; + break; + case BBQ_NOT_AVAILABLE: + ret.status = BBQ_ERR_BUSY; + break; + case BBQ_BLOCK_DONE: + if (advance_chead(q, ch, state.vsn)) { + continue; + } + ret.status = BBQ_ERR_EMPTY; + break; + default: + ret.status = BBQ_ERR; + break; + } + + if (BBQ_F_CHK_STAT_ENABLE(q->flags) && wait_consumed != NULL) { + *wait_consumed = bbq_wait_consumed_get(q, 0, deq_update); + } + + return ret; + } +} + +int bbq_dequeue(struct bbq *q, void **data) { + struct bbq_status ret = __bbq_dequeue(q, data, 1, BBQ_DATA_TYPE_SINGLE, NULL); + return ret.status; +} + +int bbq_dequeue_elem(struct bbq *q, void *data) { + struct bbq_status ret = __bbq_dequeue(q, data, 1, BBQ_DATA_TYPE_SINGLE, NULL); + return ret.status; +} + +static inline uint32_t bbq_max_burst(struct bbq *q, uint32_t n) { + if (bbq_unlikely(n > q->bs)) { + return q->bs; + } + + return n; +} + +static uint32_t bbq_dequeue_burst_1d_array(struct bbq *q, void *obj_table, uint32_t n, uint32_t *wait_consumed) { + if (bbq_unlikely(q == NULL || obj_table == NULL)) { + return 0; + } + + if (bbq_unlikely(!BBQ_F_CHK_COPY_VALUE(q->flags))) { + return 0; + } + + uint32_t burst = 0; + uint32_t ready = 0; + void *obj = obj_table; + struct bbq_status ret = {0}; + + while (ready < n) { + burst = bbq_max_burst(q, n - ready); + ret = __bbq_dequeue(q, obj, burst, BBQ_DATA_TYPE_1D_ARRAY, wait_consumed); + if (ret.status != BBQ_OK) { + break; + } + obj += q->entry_size * ret.actual_burst; + ready += ret.actual_burst; + } + + return ready; +} + +static uint32_t bbq_dequeue_burst_2d_array(struct bbq *q, void **obj_table, uint32_t n, uint32_t *wait_consumed) { + if (bbq_unlikely(q == NULL || obj_table == NULL)) { + return 0; + } + + uint32_t burst = 0; + uint32_t ready = 0; + void **obj_table_tmp = obj_table; + struct bbq_status ret = {0}; + + while (ready < n) { + burst = bbq_max_burst(q, n - ready); + ret = __bbq_dequeue(q, obj_table_tmp, burst, BBQ_DATA_TYPE_2D_ARRAY, wait_consumed); + if (ret.status != BBQ_OK) { + break; + } + obj_table_tmp += ret.actual_burst; + ready += ret.actual_burst; + } + + return ready; +} + +/* 尝试一次入队多个数据,直到达到最大数量,或是入队失败 */ +static uint32_t bbq_enqueue_burst_1d_array(struct bbq *q, void const *obj_table, uint32_t n, uint32_t *wait_consumed) { + if (bbq_unlikely(q == NULL || obj_table == NULL)) { + return 0; + } + + if (bbq_unlikely(!BBQ_F_CHK_COPY_VALUE(q->flags))) { + return 0; + } + + uint32_t burst = 0; + uint32_t ready = 0; + void const *obj = obj_table; + struct bbq_status ret = {0}; + + while (ready < n) { + burst = bbq_max_burst(q, n - ready); + ret = __bbq_enqueue(q, obj, burst, BBQ_DATA_TYPE_1D_ARRAY, wait_consumed); + if (ret.status != BBQ_OK) { + break; + } + obj += q->entry_size * ret.actual_burst; + ready += ret.actual_burst; + } + + return ready; +} + +/* 尝试一次入队多个数据,直到达到最大数量,或是入队失败 */ +static uint32_t bbq_enqueue_burst_2d_array(struct bbq *q, void *const *obj_table, uint32_t n, uint32_t *wait_consumed) { + if (bbq_unlikely(q == NULL || obj_table == NULL)) { + return 0; + } + + uint32_t burst = 0; + uint32_t ready = 0; + void *const *obj_table_tmp = obj_table; + struct bbq_status ret = {0}; + + while (ready < n) { + burst = bbq_max_burst(q, n - ready); + ret = __bbq_enqueue(q, obj_table_tmp, burst, BBQ_DATA_TYPE_2D_ARRAY, wait_consumed); + if (ret.status != BBQ_OK) { + break; + } + obj_table_tmp += ret.actual_burst; + ready += ret.actual_burst; + } + + return ready; +} + +uint32_t bbq_enqueue_burst_elem(struct bbq *q, void const *obj_table, uint32_t n, uint32_t *wait_consumed) { + return bbq_enqueue_burst_1d_array(q, obj_table, n, wait_consumed); +} + +uint32_t bbq_enqueue_burst_elem_2d_array(struct bbq *q, void *const *obj_table, uint32_t n, uint32_t *wait_consumed) { + return bbq_enqueue_burst_2d_array(q, obj_table, n, wait_consumed); +} + +uint32_t bbq_enqueue_burst(struct bbq *q, void *const *obj_table, uint32_t n, uint32_t *wait_consumed) { + return bbq_enqueue_burst_2d_array(q, obj_table, n, wait_consumed); +} + +uint32_t bbq_dequeue_burst(struct bbq *q, void **obj_table, uint32_t n, uint32_t *wait_consumed) { + return bbq_dequeue_burst_2d_array(q, obj_table, n, wait_consumed); +} + +uint32_t bbq_dequeue_burst_elem(struct bbq *q, void *obj_table, uint32_t n, uint32_t *wait_consumed) { + return bbq_dequeue_burst_1d_array(q, obj_table, n, wait_consumed); +} + +bool bbq_debug_check_array_bounds(struct bbq *q) { +#ifdef BBQ_MEMORY + void *value = malloc(q->entry_size); + memset(value, BBQ_MEM_MAGIC, q->entry_size); + + for (size_t i = 0; i < q->bn; i++) { + // 针对内存检查版本,申请了bs+1个entry + char *last_entry = q->blocks[i].entries + q->bs * q->entry_size; + if (memcmp(last_entry, value, q->entry_size) != 0) { + return false; + } + } +#else + AVOID_WARNING(q); +#endif + return true; +} + +#if 0 +#include <stdio.h> +/* 位置有关代码,需要-fPIC,这里注释掉用于调试 */ +void bbq_debug_block_print(struct bbq *q, struct bbq_block *block) { + bool prod_single = q->prod_single; + bool cons_single = q->cons_single; + + uint64_t allocated = bbq_atomic64_load(&block->allocated, prod_single); + uint64_t committed = bbq_atomic64_load(&block->committed, prod_single); + uint64_t reserved = bbq_atomic64_load(&block->reserved, cons_single); + uint64_t consumed = bbq_atomic64_load(&block->consumed, cons_single); + printf(" allocated:%lu(ver:%lu) committed:%lu(ver:%lu) reserved:%lu(ver:%lu)", + bbq_cur_off(q, allocated), bbq_cur_vsn(q, allocated), + bbq_cur_off(q, committed), bbq_cur_vsn(q, committed), + bbq_cur_off(q, reserved), bbq_cur_vsn(q, reserved)); + if (BBQ_F_CHK_DROP_OLD(q->flags)) { + printf("\n"); + } else { + printf(" consumed:%lu(ver:%lu)\n", bbq_cur_off(q, consumed), bbq_cur_vsn(q, consumed)); + } +} + +void bbq_debug_struct_print(struct bbq *q) { + printf("-----bbq:%s-----\n", BBQ_F_CHK_DROP_OLD(q->flags) ? "drop old" : "retry new"); + uint64_t phead = bbq_atomic64_load(&q->phead.value, q->prod_single); + uint64_t chead = bbq_atomic64_load(&q->chead.value, q->cons_single); + + printf("block number:%u block size:%u total entries:%u\n", q->bn, q->bs, q->bn * q->bs); + printf("producer header idx:%lu vsn:%lu\n", bbq_head_idx(q, phead), bbq_head_vsn(q, phead)); + + uint64_t ph_idx = bbq_head_idx(q, phead); + uint64_t ch_idx = bbq_head_idx(q, chead); + if (ph_idx != ch_idx) { + printf("block[%lu]\n", ph_idx); + bbq_debug_block_print(q, &(q->blocks[ph_idx])); + } + + printf("consumer header idx:%lu vsn:%lu\n", bbq_head_idx(q, chead), bbq_head_vsn(q, chead)); + printf("block[%lu]\n", ch_idx); + bbq_debug_block_print(q, &(q->blocks[ch_idx])); +} +#endif + +#if 0 +/* 根据实际head以及块上的游标推算出待消费的个数,该函数很影响性能 */ +static uint32_t bbq_wait_consumed_get_from_head(struct bbq *q, + uint64_t *ch_ptr, + uint64_t *ph_ptr, + struct bbq_block *blk_ph) { + uint64_t ch = 0; + uint64_t ph = 0; + if (ch_ptr != NULL) { + ch = *ch_ptr; + } else { + ch = bbq_atomic64_load(&q->chead.value); + } + + if (ph_ptr != NULL) { + ph = *ph_ptr; + } else { + ph = bbq_atomic64_load(&q->phead.value); + } + + uint64_t ph_idx = bbq_head_idx(q, ph); + uint64_t ch_idx = bbq_head_idx(q, ch); + uint64_t committed_off = bbq_cur_off(q, bbq_atomic64_load(&blk_ph->committed)); + + struct bbq_block *blk_ch = &(q->blocks[bbq_head_idx(q, ch)]); + uint64_t reserved_off = bbq_cur_off(q, bbq_atomic64_load(&blk_ch->reserved)); + + // "生产者"超过"消费者"块的个数 + uint64_t idx_diff = ph_idx >= ch_idx ? ph_idx - ch_idx : q->bn - ch_idx + ph_idx; + if (!BBQ_F_CHK_DROP_OLD(q->flags)) { + // 这里idx_diff-1=-1也是正确。 + return (idx_diff - 1) * q->bs + (q->bs - reserved_off + committed_off); + } + + uint64_t ch_vsn = bbq_head_vsn(q, ch); + uint64_t ph_vsn = bbq_head_vsn(q, ph); + + if (ph_vsn == ch_vsn || (ph_vsn == (ch_vsn + 1) && (ph_idx < ch_idx))) { + // drop old模式,未发生覆盖 + return (idx_diff - 1) * q->bs + (q->bs - reserved_off + committed_off); + } + + if (ph_idx == ch_idx) { + // drop old模式,发生了覆盖,当前块以及之前已生产的都作废 + return 0; + } + + return (idx_diff - 1) * q->bs + committed_off; +} + +/* 根据head偏移判断是否为空,耗性能函数 */ +bool bbq_empty_from_head(struct bbq *q) { + uint64_t phead = bbq_atomic64_load(&q->phead.value); + uint64_t chead = bbq_atomic64_load(&q->chead.value); + + uint64_t ph_vsn = bbq_head_vsn(q, phead); + uint64_t ch_vsn = bbq_head_vsn(q, chead); + uint64_t ph_idx = bbq_head_idx(q, phead); + uint64_t ch_idx = bbq_head_idx(q, chead); + + struct bbq_block *block; + + if (ph_idx != ch_idx) { + return false; + } + + block = &q->blocks[ph_idx]; + if (ph_vsn == ch_vsn) { + if (bbq_cur_off(q, bbq_atomic64_load(&block->reserved)) == bbq_cur_off(q, bbq_atomic64_load(&block->committed))) { + return true; + } + } + + uint64_t reserved = bbq_atomic64_load(&block->reserved); + uint64_t reserved_off = bbq_cur_off(q, reserved); + + if (BBQ_F_CHK_DROP_OLD(q->flags) && + ph_vsn > ch_vsn && + reserved_off != q->bs) { + // 生产者追上了消费者,当前块以及未消费的全部 + // 如果reserved指向当前块的最后一个entry,可以移动head消费下一块,否则返回空 + return true; + } + + return false; +} +#endif
\ No newline at end of file diff --git a/bbq/unittest/CMakeLists.txt b/bbq/unittest/CMakeLists.txt new file mode 100644 index 0000000..fedd026 --- /dev/null +++ b/bbq/unittest/CMakeLists.txt @@ -0,0 +1,25 @@ +cmake_minimum_required(VERSION 3.0) +project(BBQ_TESTS) + + +# 指定库路径 +link_directories(${LIB_PATH}) +# 指定头文件 +include_directories( + ${CMAKE_CURRENT_SOURCE_DIR}/common/ +) + +# 链接静态库 +link_libraries(bbq) +# 指定可执行文件输出路径 +set(EXECUTABLE_OUTPUT_PATH ${EXEC_PATH}) + +# 搜索当前cmake文件所在目录下的c文件 +file(GLOB SRC_C_LIST "${CMAKE_CURRENT_SOURCE_DIR}/*.c") +file(GLOB SRC_LIST "${CMAKE_CURRENT_SOURCE_DIR}/*.cc") +list(APPEND SRC_LIST ${SRC_C_LIST}) + +add_executable(bbq_unittest ${SRC_LIST}) # 添加可执行程序 +target_link_libraries(bbq_unittest gtest gtest_main pthread) # 链接gtest库 + +add_test(bbq_unittest ${EXEC_PATH}/bbq_unittest) # 添加测试,保证make test可以执行该测试用例 diff --git a/bbq/unittest/ut_bbq.cc b/bbq/unittest/ut_bbq.cc new file mode 100644 index 0000000..d244894 --- /dev/null +++ b/bbq/unittest/ut_bbq.cc @@ -0,0 +1,1189 @@ +/* + * @Author: liuyu + * @LastEditTime: 2024-07-07 21:59:54 + * @Email: [email protected] + * @Describe: 简单的测试用例,测试基本功能 + */ + +#include "gtest/gtest.h" +extern "C" { +#include "ut_bbq_func.h" +#include <math.h> +extern bool bbq_debug_check_array_bounds(struct bbq *q); +extern void bbq_struct_print(struct bbq *q); +extern uint32_t bbq_enqueue_burst_elem_2d_array(struct bbq *q, void *const *obj_table, uint32_t n, uint32_t *wait_consumed); +extern bool bbq_check_power_of_two(int n); +extern unsigned bbq_ceil_log2(uint64_t x); +extern uint64_t bbq_fetch_max(union bbq_atomic64 *atomic, uint64_t upd, bool single); +extern bool ut_malloc_free_equal(); +extern int bbq_bnbs_calc(uint32_t entries, uint32_t *bn, uint32_t *bs); +extern void bbq_atomic64_store(union bbq_atomic64 *atomic, uint64_t value, bool single); +extern uint64_t bbq_atomic64_load(union bbq_atomic64 *atomic, bool single); +extern bool bbq_debug_check_array_bounds(struct bbq *q); +extern struct bbq *bbq_create_elem_with_bnbs(const char *name, uint32_t bn, uint32_t bs, + size_t obj_size, int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f); +extern uint64_t bbq_atomic64_load(union bbq_atomic64 *atomic, bool single); +} + +#define BUF_CNT 4096 + +class ut_bbq : public testing::Test { + protected: + virtual void SetUp() override { + // 1.清空内存malloc/free统计 + ut_memory_counter_clear(); + + // 2.入队空间初始化 + UT_DOUBLE_PTR_DATA_INIT(enq_table1, uint16_t, BUF_CNT); + UT_PTR_ARRAY_DATA_INIT(enq_table2, uint16_t, BUF_CNT); + UT_ARRAY_DATA_INIT(enq_table3, BUF_CNT); + } + + virtual void TearDown() override { + // 1.释放测试数据 + UT_DOUBLE_PTR_DATA_DESTORY(enq_table1, BUF_CNT); + UT_PTR_ARRAY_DATA_DESTORY(enq_table2, BUF_CNT); + + // 2.内存泄漏检测 + EXPECT_TRUE(ut_malloc_free_equal()); + } + + // 入队数据 + uint16_t **enq_table1; + uint16_t *enq_table2[BUF_CNT]; + uint16_t enq_table3[BUF_CNT]; +}; + +TEST_F(ut_bbq, single_retry_new_cp_ptr) { + int ret = 0; + uint64_t cnt = 0; + uint16_t *deq_data = NULL; + + // 创建队列 + struct bbq *q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, + BBQ_F_RETRY_NEW, ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue(q, (void **)&enq_table1[i]) == 0) { + cnt++; + } + } + + // 部分入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue(q, (void **)&enq_table2[i]) == 0) { + cnt++; + } + } + + // 入队成功个数等于队列总数 + EXPECT_EQ(cnt, BUF_CNT); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue(q, (void **)&deq_data); + if (ret == 0) { + EXPECT_EQ(*deq_data, UT_DATA_MAGIC); + cnt++; + } + } + // 全部出队成功 + EXPECT_EQ(cnt, BUF_CNT); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + bbq_destory(q); +} + +TEST_F(ut_bbq, single_retry_new_cp_value) { + int ret = 0; + uint64_t cnt = 0; + uint16_t deq_data; + + // 创建队列 + struct bbq *q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue(q, (void **)enq_table1[i]) == 0) { + cnt++; + } + } + + // 部分入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue_elem(q, enq_table2[i]) == 0) { + cnt++; + } + } + + // 入队成功个数等于队列总数 + EXPECT_EQ(cnt, BUF_CNT); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue_elem(q, &deq_data); + if (ret == 0) { + EXPECT_EQ(deq_data, UT_DATA_MAGIC); + cnt++; + } + } + // 全部出队成功 + EXPECT_EQ(cnt, BUF_CNT); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue_elem(q, &deq_data), BBQ_ERR_EMPTY); + bbq_destory(q); +} + +TEST_F(ut_bbq, single_drop_old_cp_pointer) { + int ret = 0; + uint64_t cnt = 0; + uint16_t *deq_data = NULL; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + + // 创建队列 + struct bbq *q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, + BBQ_F_DROP_OLD, ut_malloc_def_callback, + ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功,入队个数是BUF_CNT的整数倍,因此到了一个边界,刚好与消费者位置一致(套了loop圈) + uint32_t loop = 3; + for (uint32_t n = 0; n < loop; n++) { + for (uint32_t i = 0; i < first_cnt; i++) { + ret = bbq_enqueue(q, (void **)&enq_table1[i]); + if (ret == 0) { + cnt++; + } + } + } + EXPECT_EQ(cnt, first_cnt * loop); + + // 全部入队成功 + cnt = 0; + for (uint32_t i = 0; i < second_cnt; i++) { + if (bbq_enqueue(q, (void **)&enq_table2[i]) == 0) { + cnt++; + } + } + EXPECT_EQ(cnt, second_cnt); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue(q, (void **)&deq_data); + if (ret == 0) { + EXPECT_EQ(*deq_data, UT_DATA_MAGIC); + cnt++; + } + } + + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。 + EXPECT_EQ(cnt, second_cnt - q->bs); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + bbq_destory(q); +} + +TEST_F(ut_bbq, single_drop_old_cp_value) { + int ret = 0; + uint64_t cnt = 0; + uint16_t deq_data; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + + // 创建队列 + struct bbq *q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue_elem(q, &deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功,入队个数是BUF_CNT的整数倍,因此到了一个边界,刚好与消费者位置一致(套了loop圈) + uint32_t loop = 3; + for (uint32_t n = 0; n < loop; n++) { + for (uint32_t i = 0; i < first_cnt; i++) { + ret = bbq_enqueue_elem(q, enq_table1[i]); + if (ret == 0) { + cnt++; + } + } + } + EXPECT_EQ(cnt, first_cnt * loop); + + // 全部入队成功 + cnt = 0; + for (uint32_t i = 0; i < second_cnt; i++) { + if (bbq_enqueue_elem(q, enq_table2[i]) == 0) { + cnt++; + } + } + EXPECT_EQ(cnt, second_cnt); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue_elem(q, &deq_data); + if (ret == 0) { + EXPECT_EQ(deq_data, UT_DATA_MAGIC); + cnt++; + } + } + + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。 + EXPECT_EQ(cnt, second_cnt - q->bs); + // 空队出队失败 + EXPECT_EQ(bbq_dequeue_elem(q, &deq_data), BBQ_ERR_EMPTY); + + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_retry_new_cp_value) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = 4000; + uint64_t second_cnt = 1000; + uint16_t deq_table1[BUF_CNT] = {0}; + uint16_t *deq_table2 = (uint16_t *)ut_malloc(UT_MODULE_DATA, sizeof(uint16_t) * BUF_CNT); + uint32_t wait_consumed = 0; + + // 创建队列 + q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(first_cnt, q->bn * q->bs); + + // 批量入队(全部成功) + ret1 = bbq_enqueue_burst_elem(q, (void const *)enq_table3, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(部分成功) + // 由于需要将最终的值入队列,二维数组里的值不连续,需要循环赋值。不推荐这个函数,但可用于特殊场景。 + ret2 = bbq_enqueue_burst_elem_2d_array(q, (void *const *)enq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, ret1 + ret2); + + // 出队列(全部成功) + ret1 = bbq_dequeue_burst_elem(q, (void *)deq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret2); + + // 出队列(部分成功) + ret2 = bbq_dequeue_burst_elem(q, (void *)deq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + for (uint32_t i = 0; i < ret2; i++) { + EXPECT_EQ(deq_table2[i], UT_DATA_MAGIC) << "i :" << i; + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + ut_free(UT_MODULE_DATA, deq_table2); + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_retry_new_cp_pointer) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = 4000; + uint64_t second_cnt = 1000; + uint32_t wait_consumed = 0; + uint16_t *deq_table1[BUF_CNT] = {0}; + uint16_t **deq_table2 = (uint16_t **)ut_malloc(UT_MODULE_DATA, sizeof(uint16_t *) * BUF_CNT); + + // 创建队列 + q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, + BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(first_cnt, q->bn * q->bs); + + // 批量入队(全部成功) + ret1 = bbq_enqueue_burst(q, (void *const *)enq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(部分成功) + ret2 = bbq_enqueue_burst(q, (void *const *)enq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, ret1 + ret2); + + // 出队列(全部成功) + ret1 = bbq_dequeue_burst(q, (void **)deq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret2); + + // 出队列(部分成功) + ret2 = bbq_dequeue_burst(q, (void **)deq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(*deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + for (uint32_t i = 0; i < ret2; i++) { + EXPECT_EQ(*deq_table2[i], UT_DATA_MAGIC) << "i :" << i; + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + ut_free(UT_MODULE_DATA, deq_table2); + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_drop_old_cp_pointer) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + uint32_t wait_consumed = 0; + uint16_t *deq_table1[BUF_CNT] = {0}; + uint16_t **deq_table2 = (uint16_t **)ut_malloc(UT_MODULE_DATA, sizeof(uint16_t *) * BUF_CNT); + + // 创建队列 + q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_GT(second_cnt, q->bs); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 批量入队(全部成功,入队个数等于队列总容量,未发生覆盖) + ret1 = bbq_enqueue_burst(q, (void *const *)enq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + // EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(全部成功),覆盖了旧数据 + ret2 = bbq_enqueue_burst(q, (void *const *)enq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, second_cnt); + // EXPECT_EQ(wait_consumed, second_cnt - q->bs); + + // 出队列(部分成功) + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。本例中第一个完整块作废。 + ret1 = bbq_dequeue_burst(q, (void **)deq_table1, BUF_CNT, &wait_consumed); + EXPECT_EQ(ret1, second_cnt - q->bs); + // EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(*deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + // 此时生产者和消费者在同一块上,入队个数为队列容量的N倍,由于发生了覆盖,且依旧在同一块上,数据全作废 + for (uint32_t loop = 0; loop < 3; loop++) { + ret1 = bbq_enqueue_burst(q, (void *const *)enq_table1, BUF_CNT, &wait_consumed); + EXPECT_EQ(ret1, BUF_CNT); + EXPECT_TRUE(bbq_empty(q)); + EXPECT_EQ(wait_consumed, 0); + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + ut_free(UT_MODULE_DATA, deq_table2); + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_drop_old_cp_value) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + uint32_t wait_consumed = 0; + uint16_t deq_table1[BUF_CNT] = {0}; + + // 创建队列 + q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_GT(second_cnt, q->bs); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 批量入队(全部成功) + ret1 = bbq_enqueue_burst_elem(q, (void const *)enq_table3, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + // EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(全部成功),覆盖了旧数据 + // 由于需要将最终的值入队列,二维数组里的值不连续,需要循环赋值。不推荐这个函数,但可用于特殊场景。 + ret2 = bbq_enqueue_burst_elem_2d_array(q, (void *const *)enq_table1, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, second_cnt); + // EXPECT_EQ(wait_consumed, second_cnt - q->bs); + + // 出队列(部分成功) + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。 + ret1 = bbq_dequeue_burst_elem(q, (void *)deq_table1, BUF_CNT, &wait_consumed); + EXPECT_EQ(ret1, second_cnt - q->bs); + EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +typedef struct { + uint64_t thread_cnt; + bbq_atomic64 data; + aotmic_uint64 ready_thread_cnt; +} ut_fetch_arg; + +void *fetch_max_thread_func(void *arg) { + ut_fetch_arg *fetch_arg = (ut_fetch_arg *)arg; + fetch_arg->ready_thread_cnt.fetch_add(1); + + while (fetch_arg->ready_thread_cnt.load() != fetch_arg->thread_cnt) { + } + + uint64_t *ret = (uint64_t *)ut_malloc(UT_MODULE_UTEST, sizeof(*ret)); + // 不同线程写入不同的>3的数 + *ret = bbq_fetch_max(&fetch_arg->data, pthread_self() + 3, false); + pthread_exit(ret); +} + +TEST_F(ut_bbq, mpmc) { + struct ut_info_s info { + .cfg = { + .base = { + .name = {}, + .introduce = {}, + .core_begin = 0, + .core_end = 3, + }, + .ring = { + .ring_type = UT_RING_TYPE_BBQ, + .producer_cnt = 4, + .consumer_cnt = 4, + .workload = UT_WORKLOAD_SIMPLE, + .entries_cnt = 4096, + .block_count = 0, + .burst_cnt = 4, + }, + .run = { + .run_ok_times = 9000000, + .run_time = 0, + }, + }, + .ctl = { + .running = true, + .all_threads_start = {}, + .producer_exit = {}, + }, + }; + + // 队列初始化 + int ret = -1; + struct ut_queue q; + ret = ut_queue_init_bbq(&info.cfg, &q); + ASSERT_TRUE(ret == 0); + + // 创建线程 + pthread_t *threads = ut_threads_create(&info, &q); + ASSERT_TRUE(threads); + + // 等待所有线程完成,回收数据 + uint32_t thread_cnt = info.cfg.ring.producer_cnt + info.cfg.ring.consumer_cnt; + struct ut_exit_data **exit_data = (struct ut_exit_data **)ut_malloc(UT_MODULE_UTEST, sizeof(struct ut_exit_data **) * (thread_cnt)); + ut_wait_all_threads_exit(&info, thread_cnt, threads, exit_data); + + // 比较数据 + struct ut_merge_s merge; + memset(&merge, 0, sizeof(merge)); + ut_merge_all_data(exit_data, thread_cnt, &merge); + EXPECT_EQ(merge.consumer.data_error_cnt, 0); + EXPECT_EQ(merge.consumer.ok_cnt, merge.producer.ok_cnt); + + // 释放数据 + for (uint32_t i = 0; i < thread_cnt; i++) { + ut_exit_data_destory(exit_data[i]); + } + ut_free(UT_MODULE_UTEST, exit_data); + ut_threads_destory(&info, threads); + EXPECT_TRUE(bbq_debug_check_array_bounds((struct bbq *)q.ring)); + ut_queue_destory(&q); +} + +TEST_F(ut_bbq, bbq_fetch_max) { + uint64_t ret = 0; + ut_fetch_arg arg; + + bool single = false; + arg.data.m.store(0); + arg.thread_cnt = 0; + arg.ready_thread_cnt.store(0); + + bbq_atomic64_store(&arg.data, 1, single); // 初始化1 + arg.thread_cnt = 50; + + ret = bbq_fetch_max(&arg.data, 2, single); // max比较后设置为2 + EXPECT_EQ(bbq_atomic64_load(&arg.data, single), 2); + EXPECT_EQ(ret, 1); + + pthread_t *threads = (pthread_t *)ut_malloc(UT_MODULE_UTEST, sizeof(*threads) * arg.thread_cnt); + for (uint64_t i = 0; i < arg.thread_cnt; i++) { + // 多个线程同时fetch_max,输入 > 3的数据 + pthread_create(&threads[i], NULL, fetch_max_thread_func, (void *)&arg); + } + + int eq_cnt = 0; + for (uint64_t i = 0; i < arg.thread_cnt; i++) { + uint64_t *tret; + pthread_join(threads[i], (void **)&tret); // 等待每个线程结束 + if (*tret == 2) { + eq_cnt++; // 统计返回2的个数 + } + ut_free(UT_MODULE_UTEST, tret); + } + + // EXPECT_EQ(eq_cnt, 1); + ut_free(UT_MODULE_UTEST, threads); +} + +TEST_F(ut_bbq, power_of_two) { + uint32_t tmp = 0; + uint32_t max = pow(2, 32) - 1; + + EXPECT_FALSE(bbq_check_power_of_two(0)); + + tmp = 3; + for (uint32_t val = 5; val < max; val *= tmp) { + EXPECT_FALSE(bbq_check_power_of_two(val)); + if (val >= max / tmp) { + break; // 即将越界 + } + } + + tmp = 2; + for (uint32_t val = 1; val < max; val *= tmp) { + EXPECT_TRUE(bbq_check_power_of_two(val)); + if (val >= max / tmp) { + break; + } + } +} + +TEST_F(ut_bbq, bbq_block_number_calc) { + uint32_t tmp = 2; + uint32_t max = pow(2, 32) - 1; + uint32_t bn = 0, bs = 0; + int ret = 0; + + ret = bbq_bnbs_calc(1, &bn, &bs); + EXPECT_EQ(ret, BBQ_ERR_OUT_OF_RANGE); + + for (uint32_t val = 2; val < max; val *= tmp) { + ret = bbq_bnbs_calc(val, &bn, &bs); + EXPECT_EQ(ret, BBQ_OK); + if (val <= 128) { + EXPECT_EQ(bn, 2); + } else if (val <= 2048) { + EXPECT_EQ(bn, 4); + } else if (val <= 32768) { + EXPECT_EQ(bn, 8); + } else if (val <= 524288) { + EXPECT_EQ(bn, 16); + } else if (val <= 8388608) { + EXPECT_EQ(bn, 32); + } else if (val <= 134217728) { + EXPECT_EQ(bn, 64); + } else if (val <= 2147483648) { + EXPECT_EQ(bn, 128); + } else { + EXPECT_TRUE(0); // 异常 + } + + if (val >= max / tmp) { + break; + } + } +} + +#define OFFSETOF(type, member) ((size_t) & ((type *)0)->member) +#define PRINT_OFFSETOF(type, member) printf("Offset of '%s' in '%s' is %zu\n", #member, #type, OFFSETOF(type, member)) +#define PTR_ALIGNED_64(ptr) (((uintptr_t)ptr & (64 - 1)) == 0) +#define SIZE_ALIGNED_64(v) (((sizeof(v)) & (64 - 1)) == 0) + +TEST_F(ut_bbq, bbq_cache_line) { + + // 创建队列 + struct bbq *q = bbq_create("ut_bbq", 4096, BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 首地址64字节对齐 + EXPECT_EQ(PTR_ALIGNED_64(q), true); + + // 关键成员64字节对齐 + EXPECT_EQ(PTR_ALIGNED_64(&q->name), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->socket_id), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->phead.value), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->chead.value), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->blocks), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->blocks[0].committed), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->blocks[0].entries), true); + + EXPECT_EQ(SIZE_ALIGNED_64(struct bbq_head), true); + EXPECT_EQ(SIZE_ALIGNED_64(struct bbq_block), true); + + // PRINT_OFFSETOF(struct bbq, name); + // PRINT_OFFSETOF(struct bbq, socket_id); + // PRINT_OFFSETOF(struct bbq, phead); + // PRINT_OFFSETOF(struct bbq, chead); + // PRINT_OFFSETOF(struct bbq, blocks); + + bbq_destory(q); +} + +void expect_phead(struct bbq *q, uint64_t idx, uint64_t vsn, int line) { + uint64_t ph = bbq_atomic64_load(&q->phead.value, q->prod_single); + EXPECT_EQ(bbq_head_idx(q, ph), idx) << "line: " << line; + EXPECT_EQ(bbq_head_vsn(q, ph), vsn) << "line: " << line; +} + +void expect_chead(struct bbq *q, uint64_t idx, uint64_t vsn, int line) { + uint64_t ch = bbq_atomic64_load(&q->chead.value, q->cons_single); + EXPECT_EQ(bbq_head_idx(q, ch), idx) << "line: " << line; + EXPECT_EQ(bbq_head_vsn(q, ch), vsn) << "line: " << line; +} + +void expect_eq_allocated(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t allocated = bbq_atomic64_load(&block->allocated, q->prod_single); + EXPECT_EQ(bbq_cur_off(q, allocated), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, allocated), vsn) << "line: " << line; +} + +void expect_eq_committed(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t committed = bbq_atomic64_load(&block->committed, q->prod_single); + EXPECT_EQ(bbq_cur_off(q, committed), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, committed), vsn) << "line: " << line; +} + +void expect_eq_consumed(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t consumed = bbq_atomic64_load(&block->consumed, q->cons_single); + EXPECT_EQ(bbq_cur_off(q, consumed), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, consumed), vsn) << "line: " << line; +} + +void expect_eq_reserved(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t reserved = bbq_atomic64_load(&block->reserved, q->cons_single); + EXPECT_EQ(bbq_cur_off(q, reserved), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, reserved), vsn) << "line: " << line; +} + +// 初始化状态 +TEST_F(ut_bbq, head_cursor_init) { + struct bbq *q; + uint32_t bn = 2; + uint32_t bs = 4; + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 1.初始化状态,除了第一个block外其他块的4个游标都指向最后一个条目 + + EXPECT_EQ(bbq_atomic64_load(&q->phead.value, q->prod_single), 0); + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + + expect_eq_allocated(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], 0, 0, __LINE__); + for (uint32_t i = 1; i < bn; i++) { + expect_eq_allocated(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[i], bs, 0, __LINE__); + } + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +void ut_produce_something(uint32_t produce_cnt) { + int ret = 0; + struct bbq *q; + uint32_t bn = 8; + uint32_t bs = 4096; + int enqueue_data = UT_DATA_MAGIC; + int dequeue_data = 0; + + EXPECT_GT(produce_cnt, 0); + EXPECT_LE(produce_cnt, bs); + + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 生产produce_cnt + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_enqueue_elem(q, &enqueue_data); + EXPECT_TRUE(ret == BBQ_OK); + } + + EXPECT_EQ(bbq_atomic64_load(&q->phead.value, q->prod_single), 0); + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + expect_eq_allocated(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], 0, 0, __LINE__); + + // 消费完 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_dequeue_elem(q, &dequeue_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(dequeue_data, UT_DATA_MAGIC); + } + + EXPECT_EQ(bbq_atomic64_load(&q->phead.value, q->prod_single), 0); + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + expect_eq_allocated(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], produce_cnt, 0, __LINE__); + + for (uint32_t i = 1; i < bn; i++) { + expect_eq_allocated(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[i], bs, 0, __LINE__); + } + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} +// 在第一块内生产,然后被消费完 +TEST_F(ut_bbq, head_cursor_produce_something) { + ut_produce_something(1); + ut_produce_something(567); + ut_produce_something(789); + ut_produce_something(4096); +} + +void ut_produce_next_block(uint32_t over) { + int ret = 0; + struct bbq *q; + uint32_t bn = 8; + uint32_t bs = 4096; + uint32_t produce_cnt = bs + over; + int enqueue_data = UT_DATA_MAGIC; + int dequeue_data = 0; + + EXPECT_GT(over, 0); + EXPECT_LT(over, bs); + + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 生产至第二块的第一个entry + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_enqueue_elem(q, &enqueue_data); + EXPECT_TRUE(ret == BBQ_OK); + } + + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + expect_phead(q, 1, 0, __LINE__); + expect_eq_allocated(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], 0, 0, __LINE__); + + expect_eq_allocated(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_committed(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_reserved(q, &q->blocks[1], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[1], bs, 0, __LINE__); + + // 消费完 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_dequeue_elem(q, &dequeue_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(dequeue_data, UT_DATA_MAGIC); + } + + expect_phead(q, 1, 0, __LINE__); + expect_chead(q, 1, 0, __LINE__); + expect_eq_allocated(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], bs, 0, __LINE__); + + expect_eq_allocated(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_committed(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_reserved(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_consumed(q, &q->blocks[1], over, 1, __LINE__); + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +// 第一块生产完毕,第二块生产了若干,然后被消费完 +TEST_F(ut_bbq, head_cursor_produce_next_block) { + ut_produce_next_block(1); + ut_produce_next_block(123); + ut_produce_next_block(456); + ut_produce_next_block(4095); +} + +void ut_produce_all_loop(uint32_t loop) { + int ret = 0; + struct bbq *q; + uint32_t bn = 8; + uint32_t bs = 4096; + uint32_t produce_cnt = bn * bs; + int enqueue_data = UT_DATA_MAGIC; + int dequeue_data = 0; + + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + for (uint32_t cnt = 0; cnt < loop; cnt++) { + // 所有entry生产完毕 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_enqueue_elem(q, &enqueue_data); + EXPECT_TRUE(ret == BBQ_OK); + } + + // 消费完 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_dequeue_elem(q, &dequeue_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(dequeue_data, UT_DATA_MAGIC); + } + } + + expect_phead(q, bn - 1, loop - 1, __LINE__); + expect_chead(q, bn - 1, loop - 1, __LINE__); + + expect_eq_allocated(q, &q->blocks[0], bs, loop - 1, __LINE__); + expect_eq_committed(q, &q->blocks[0], bs, loop - 1, __LINE__); + expect_eq_reserved(q, &q->blocks[0], bs, loop - 1, __LINE__); + expect_eq_consumed(q, &q->blocks[0], bs, loop - 1, __LINE__); + + for (uint32_t i = 1; i < bn; i++) { + expect_eq_allocated(q, &q->blocks[i], bs, loop, __LINE__); + expect_eq_committed(q, &q->blocks[i], bs, loop, __LINE__); + expect_eq_reserved(q, &q->blocks[i], bs, loop, __LINE__); + expect_eq_consumed(q, &q->blocks[i], bs, loop, __LINE__); + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +// 完成多轮的满生产和满消费 +TEST_F(ut_bbq, head_cursor_produce_all_loop) { + ut_produce_all_loop(1); + ut_produce_all_loop(10); + ut_produce_all_loop(23); + ut_produce_all_loop(79); +} + +TEST_F(ut_bbq, head_cursor_retry_new_full_empty) { + int ret = 0; + uint32_t entries_cnt = 4096; + uint32_t loop = 1000; + struct bbq *q; + uint64_t ph = 0; + uint64_t ch = 0; + int *data = (int *)ut_malloc(UT_MODULE_UTEST, sizeof(*data) * entries_cnt); + int tmp_data = 0; + EXPECT_TRUE(data); + + q = bbq_create_elem("ut_bbq", entries_cnt, sizeof(int), BBQ_SOCKET_ID_ANY, + BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_TRUE(bbq_empty(q)); + + for (uint32_t i = 0; i < loop; i++) { + // 入满队 + for (uint32_t j = 0; j < entries_cnt; j++) { + data[j] = (i + 1) * j; + ret = bbq_enqueue_elem(q, &data[j]); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + EXPECT_FALSE(bbq_empty(q)); + } + + // 满队再入队 + for (uint32_t j = 0; j < entries_cnt / 3; j++) { + ret = bbq_enqueue_elem(q, &data[j]); + EXPECT_TRUE(ret == BBQ_ERR_FULL); + } + + ph = bbq_atomic64_load(&q->phead.value, q->prod_single); + ch = bbq_atomic64_load(&q->chead.value, q->cons_single); + if (i == 0) { + EXPECT_EQ((ph + 1) & q->idx_mask, ch & q->idx_mask); + } else { + EXPECT_EQ((ph)&q->idx_mask, ch & q->idx_mask); + } + + for (uint32_t i = 0; i < q->bn; i++) { + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].committed, q->prod_single) & q->off_mask, q->bs); + EXPECT_GE(bbq_atomic64_load(&q->blocks[i].allocated, q->prod_single) & q->off_mask, q->bs); + } + + // 全出队 + for (uint32_t j = 0; j < entries_cnt; j++) { + EXPECT_FALSE(bbq_empty(q)); + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(tmp_data, data[j]); + } + + EXPECT_TRUE(bbq_empty(q)); + // 空出队再出队 + for (uint32_t j = 0; j < entries_cnt / 2; j++) { + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_ERR_EMPTY); + } + + ph = bbq_atomic64_load(&q->phead.value, q->prod_single); + ch = bbq_atomic64_load(&q->chead.value, q->cons_single); + EXPECT_EQ(ph & q->idx_mask, ch & q->idx_mask); + for (uint32_t i = 0; i < q->bn; i++) { + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].committed, q->prod_single) & q->off_mask, q->bs); + EXPECT_GE(bbq_atomic64_load(&q->blocks[i].allocated, q->prod_single) & q->off_mask, q->bs); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, q->cons_single) & q->off_mask, q->bs); + EXPECT_GE(bbq_atomic64_load(&q->blocks[i].reserved, q->cons_single) & q->off_mask, q->bs); + } + } + + ut_free(UT_MODULE_UTEST, data); + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +TEST_F(ut_bbq, head_cursor_mpsc_faa) { + struct ut_info_s info = { + .cfg = { + .base = { + .name = {}, + .introduce = {}, + .core_begin = 0, + .core_end = 3, + }, + .ring = { + .ring_type = UT_RING_TYPE_BBQ, + .producer_cnt = 10, + .consumer_cnt = 1, + .workload = UT_WORKLOAD_SIMPLE, + .entries_cnt = 4, + .block_count = 1, + .burst_cnt = 1, + }, + .run = { + .run_ok_times = 9000000, + .run_time = 0, + }, + }, + .ctl = { + .running = true, + .all_threads_start = {}, + .producer_exit = {}, + }, + }; + + // 队列初始化 + int ret = -1; + struct ut_queue q; + ret = ut_queue_init_bbq(&info.cfg, &q); + ASSERT_TRUE(ret == 0); + + // 创建线程 + pthread_t *threads = ut_threads_create(&info, &q); + ASSERT_TRUE(threads); + + // 等待所有线程完成,回收数据 + uint32_t thread_cnt = info.cfg.ring.producer_cnt + info.cfg.ring.consumer_cnt; + struct ut_exit_data **exit_data = (struct ut_exit_data **)ut_malloc(UT_MODULE_UTEST, sizeof(struct ut_exit_data **) * (thread_cnt)); + uint32_t i = 0; + + ut_wait_all_threads_exit(&info, thread_cnt, threads, exit_data); + + // 比较数据 + struct ut_merge_s merge; + memset(&merge, 0, sizeof(merge)); + + ut_merge_all_data(exit_data, thread_cnt, &merge); + EXPECT_EQ(merge.consumer.data_error_cnt, 0); + EXPECT_EQ(merge.consumer.ok_cnt, merge.producer.ok_cnt); + + // 释放数据 + for (i = 0; i < thread_cnt; i++) { + ut_exit_data_destory(exit_data[i]); + } + ut_free(UT_MODULE_UTEST, exit_data); + ut_threads_destory(&info, threads); + EXPECT_TRUE(bbq_debug_check_array_bounds((struct bbq *)q.ring)); + ut_queue_destory(&q); +} + +TEST_F(ut_bbq, head_cursor_drop_old_full_empty) { + int ret = 0; + uint32_t bn = 2; + uint32_t bs = 4; + uint32_t loop = 1000; + struct bbq *q; + + int tmp_data = 0; + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + // EXPECT_TRUE(bbq_empty(q)); + + for (uint32_t j = 0; j < loop; j++) { + // 入满队列 + for (uint32_t i = 0; i < bn * bs; i++) { + ret = bbq_enqueue_elem(q, &i); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + // EXPECT_FALSE(bbq_empty(q)); + } + + // 全出队 + for (uint32_t i = 0; i < bn * bs; i++) { + // EXPECT_FALSE(bbq_empty(q)); + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + EXPECT_EQ(tmp_data, i); + } + + // EXPECT_TRUE(bbq_empty(q)); + // 空队再出队,失败 + for (uint32_t i = 0; i < bn * bs; i++) { + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_ERR_EMPTY) << "ret " << ret; + } + + expect_phead(q, bn - 1, j, __LINE__); + expect_chead(q, bn - 1, j, __LINE__); + for (uint32_t i = 0; i < q->bn; i++) { + expect_eq_committed(q, &q->blocks[i], q->bs, i == 0 ? j : j + 1, __LINE__); + expect_eq_allocated(q, &q->blocks[i], q->bs, i == 0 ? j : j + 1, __LINE__); + expect_eq_reserved(q, &q->blocks[i], q->bs, i == 0 ? j : j + 1, __LINE__); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, q->cons_single), 0); + } + } + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +TEST_F(ut_bbq, head_cursor_drop_old_full_empty_cover) { + int ret = 0; + uint32_t bn = 2; + uint32_t bs = 4; + uint32_t loop = 1000; + uint32_t over_cnt = bs + 2; + struct bbq *q; + + EXPECT_EQ(over_cnt / bs, 1); + + int tmp_data = 0; + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // EXPECT_TRUE(bbq_empty(q)); + // 入满队列,再入over_cnt + for (uint32_t i = 0; i < bn * bs * loop + over_cnt; i++) { + ret = bbq_enqueue_elem(q, &i); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + + // uint32_t tmpA = i / (bn * bs); + // uint32_t tmpB = i % (bn * bs); + // if (tmpA > 0 && (tmpB < bs)) { + // // 覆盖第一个块时,整个块被作废,因此都是empty,从第二个块开始可读取 + // EXPECT_TRUE(bbq_empty(q)) << "i " << i << "tmpA " << tmpA << "tmpB " << tmpB; + // } else { + // EXPECT_FALSE(bbq_empty(q)); + // } + } + + expect_phead(q, 1, loop, __LINE__); + expect_chead(q, 0, 0, __LINE__); + // 检查每一个block上游标的正确性 + for (uint32_t i = 0; i < bn; i++) { + expect_eq_committed(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_allocated(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_reserved(q, &q->blocks[i], + i == 0 ? 0 : bs, 0, + __LINE__); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, false), 0); + } + + // 队列中的数据全出队 + for (uint32_t i = 0; i < over_cnt - bs; i++) { + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + } + + for (uint32_t i = 0; i < bn * bs; i++) { + // EXPECT_TRUE(bbq_empty(q)); + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_ERR_EMPTY) << "ret " << ret; + } + + expect_chead(q, 1, 0, __LINE__); + for (uint32_t i = 0; i < bn; i++) { + expect_eq_committed(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_allocated(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_reserved(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 1 ? loop + 1 : 0, __LINE__); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, false), 0); + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +}
\ No newline at end of file diff --git a/bbq/unittest/ut_bbq_func.c b/bbq/unittest/ut_bbq_func.c new file mode 100644 index 0000000..88910ca --- /dev/null +++ b/bbq/unittest/ut_bbq_func.c @@ -0,0 +1,615 @@ +/* + * @Author: liuyu + * @LastEditTime: 2024-07-07 22:34:03 + * @Email: [email protected] + * @Describe: TODO + */ + +#include "ut_bbq_func.h" +#include "bbq.h" +#include <pthread.h> +#include <string.h> +#include <sys/prctl.h> +#include <sys/time.h> +#include <unistd.h> + +struct ut_memory { + aotmic_uint64 malloc_cnt; + aotmic_uint64 free_cnt; +}; + +struct ut_memory ut_memory_g[UT_MODULE_MAX] = {0}; + +char *ut_ring_type_map[UT_RING_TYPE_MAX] = { + [UT_RING_TYPE_BBQ] = UT_RING_TYPE_BBQ_STR, + [UT_RING_TYPE_DPDK] = UT_RING_TYPE_DPDK_STR, + [UT_RING_TYPE_RMIND] = UT_RING_TYPE_RMIND_STR, +}; + +void *ut_malloc(enum ut_module module, size_t size) { + void *ptr = malloc(size); + if (ptr != NULL) { + atomic_fetch_add(&ut_memory_g[module].malloc_cnt, 1); + } + + return ptr; +} + +void ut_free(enum ut_module module, void *ptr) { + if (ptr != NULL) { + atomic_fetch_add(&ut_memory_g[module].free_cnt, 1); + } + free(ptr); +} + +bool ut_malloc_free_equal() { + bool ret = true; + for (int i = 0; i < UT_MODULE_MAX; i++) { + uint64_t malloc_cnt = atomic_load(&ut_memory_g[i].malloc_cnt); + uint64_t free_cnt = atomic_load(&ut_memory_g[i].free_cnt); + if (malloc_cnt != free_cnt) { + UT_ERR_LOG("[module:%d] malloc:%lu free:%lu, test malloc-free not equal\n", i, malloc_cnt, free_cnt); + ret = false; + } + } + + return ret; +} + +void ut_memory_counter_clear() { + memset(ut_memory_g, 0, sizeof(ut_memory_g)); +} + +void ut_memory_counter_print() { + for (int i = 0; i < UT_MODULE_MAX; i++) { + uint64_t malloc_cnt = atomic_load(&ut_memory_g[i].malloc_cnt); + uint64_t free_cnt = atomic_load(&ut_memory_g[i].free_cnt); + if (malloc_cnt == 0 && free_cnt == 0) { + continue; + } + + UT_INFO_LOG("[%d]test malloc:%lu free:%lu", i, + atomic_load(&ut_memory_g[i].malloc_cnt), + atomic_load(&ut_memory_g[i].free_cnt)); + } + + if (ut_malloc_free_equal()) { + UT_INFO_LOG("all memory free"); + } else { + UT_ERR_LOG("memory not all free"); + } +} + +struct ut_metric ut_clock_time_get() { + struct ut_metric metric = {0}; + clock_gettime(CLOCK_REALTIME, &metric.timestamp); // 系统实时时间,随系统实时时间改变而改变 + return metric; +} + +uint64_t ut_clock_time_to_ns(struct ut_metric *metric) { + return metric->timestamp.tv_nsec + metric->timestamp.tv_sec * 1000 * 1000 * 1000; +} + +double ut_clock_time_to_double(struct ut_metric *metric) { + return metric->timestamp.tv_sec + + metric->timestamp.tv_nsec * 1.0 / 1000 / 1000 / 1000; +} + +bool ut_clock_time_is_zero(struct ut_metric *metric) { + return metric->timestamp.tv_sec == 0 && metric->timestamp.tv_nsec == 0; +} + +bool ut_timespec_is_after(const struct timespec *a, const struct timespec *b) { + if (a->tv_sec > b->tv_sec) { + // a的秒数大于b的秒数,所以a在b之后 + return true; + } else if (a->tv_sec == b->tv_sec && a->tv_nsec > b->tv_nsec) { + // a和b的秒数相同,但a的纳秒数大于b的纳秒数,所以a在b之后 + return true; + } + // 否则,a不在b之后 + return false; +} + +struct ut_metric ut_clock_time_sub(struct ut_metric now, struct ut_metric last) { + struct ut_metric diff = { + .timestamp.tv_sec = now.timestamp.tv_sec - last.timestamp.tv_sec, + .timestamp.tv_nsec = now.timestamp.tv_nsec - last.timestamp.tv_nsec, + }; + + if (now.timestamp.tv_nsec > last.timestamp.tv_nsec) { + diff.timestamp.tv_nsec = now.timestamp.tv_nsec - last.timestamp.tv_nsec; + } else { + // 从秒借位 + diff.timestamp.tv_sec--; + diff.timestamp.tv_nsec = 1000 * 1000 * 1000 + now.timestamp.tv_nsec - last.timestamp.tv_nsec; + } + + return diff; +} + +enum ut_workload ut_workload_str2enum(const char *workload) { + if (strcmp(workload, "simple") == 0) { + return UT_WORKLOAD_SIMPLE; + } else if (strcmp(workload, "complex") == 0) { + return UT_WORKLOAD_COMPLEX; + } + + return UT_WORKLOAD_MAX; +} + +enum ut_ring_type ut_ring_type_str2enum(const char *ring_type) { + if (strcmp(ring_type, UT_RING_TYPE_BBQ_STR) == 0) { + return UT_RING_TYPE_BBQ; + } else if (strcmp(ring_type, UT_RING_TYPE_DPDK_STR) == 0) { + return UT_RING_TYPE_DPDK; + } else if (strcmp(ring_type, UT_RING_TYPE_RMIND_STR) == 0) { + return UT_RING_TYPE_RMIND; + } + + return UT_RING_TYPE_MAX; +} + +char *ut_ring_type_enum2str(enum ut_ring_type ring_type) { + if (ring_type >= UT_RING_TYPE_MAX) { + return "unknown"; + } else { + return ut_ring_type_map[ring_type]; + } +} + +int ut_setaffinity(int core_id) { + cpu_set_t mask; + CPU_ZERO(&mask); + CPU_SET(core_id, &mask); + + if (pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask) == -1) { + UT_ERR_LOG("pthread_setaffinity_np erro\n"); + return BBQ_ERR; + } + + return BBQ_OK; +} + +void *ut_malloc_def_callback(int32_t socket_id __attribute__((unused)), size_t size) { + return malloc(size); + // return aligned_alloc(BBQ_CACHE_LINE, size); +} + +void ut_free_def_callback(void *ptr, + size_t size __attribute__((unused))) { + free(ptr); +} + +uint32_t ut_bbq_enqueue_burst(void *ring, void **obj_table, uint32_t n, uint16_t thread_idx, uint32_t *wait_consumed) { + UT_AVOID_WARNING(thread_idx); + return bbq_enqueue_burst(ring, obj_table, n, wait_consumed); +} + +int ut_queue_init_bbq(struct ut_cfg *cfg, struct ut_queue *q) { +#if 0 + // 开启了BBQ_F_ENABLE_STAT 会导致性能下降 + unsigned int flags = BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT; +#else + unsigned int flags = BBQ_F_RETRY_NEW; +#endif + + if (cfg->ring.producer_cnt <= 1) { + flags |= BBQ_F_SP_ENQ; + } + + if (cfg->ring.consumer_cnt <= 1) { + flags |= BBQ_F_SC_DEQ; + } + + if (cfg->ring.block_count == 0) { + q->ring = bbq_create("ut_bbq", cfg->ring.entries_cnt, BBQ_SOCKET_ID_ANY, flags, + ut_malloc_def_callback, ut_free_def_callback); + } else { + q->ring = bbq_create_with_bnbs("ut_bbq", cfg->ring.block_count, + cfg->ring.entries_cnt / cfg->ring.block_count, + BBQ_SOCKET_ID_ANY, flags, ut_malloc_def_callback, ut_free_def_callback); + } + + if (q->ring == NULL) { + UT_ERR_LOG("bbq create queue failed"); + return BBQ_ERR_INPUT_NULL; + } + + q->ring_free_f = (ut_ring_free_f)bbq_destory; + q->enqueue_f = (ut_ring_enqueue_f)bbq_enqueue; + q->dequeue_f = (ut_ring_dequeue_f)bbq_dequeue; + q->enqueue_burst_f = (ut_enqueue_burst_f)ut_bbq_enqueue_burst; + q->dequeue_burst_f = (ut_dequeue_burst_f)bbq_dequeue_burst; + return 0; +} + +void ut_queue_destory(struct ut_queue *q) { + if (q != NULL && q->ring_free_f != NULL) { + q->ring_free_f(q->ring); + } +} + +bool ut_all_producer_exit(struct ut_info_s *ut_info) { + return atomic_load(&ut_info->ctl.producer_exit) == ut_info->cfg.ring.producer_cnt; +} + +void ut_wait_all_threads_ready(struct ut_ctl *ctl) { + pthread_barrier_wait(&ctl->all_threads_start); + UT_DBG_LOG("thread init done!"); +} + +struct ut_exit_data *ut_exit_data_create(struct ut_thread_arg *t_arg) { + struct ut_exit_data *exit_data = (struct ut_exit_data *)ut_malloc(UT_MODULE_COMMON, sizeof(struct ut_exit_data)); + if (exit_data == NULL) { + UT_ERR_LOG("malloc failed"); + exit(-1); + } + + size_t size = t_arg->info->cfg.ring.entries_cnt; + exit_data->simple_data_cnt = size; + exit_data->simple_data = ut_data_create(size, UT_DATA_MAGIC_TYPE); + + if (exit_data->simple_data == NULL) { + UT_ERR_LOG("malloc failed"); + exit(-1); + } + exit_data->arg = t_arg; + exit_data->thread_id = pthread_self(); + exit_data->latency_ns = 0; + exit_data->data_error_cnt = 0; + + return exit_data; +} + +void ut_exit_data_destory(struct ut_exit_data *data) { + ut_data_destory(data->simple_data, data->simple_data_cnt); + ut_free(UT_MODULE_COMMON, data->arg); + ut_free(UT_MODULE_COMMON, data); +} + +struct ut_data **ut_data_create(size_t cnt, enum ut_data_type data_type) { + struct ut_data **simple_data = ut_malloc(UT_MODULE_DATA, sizeof(*simple_data) * cnt); + struct ut_metric enqueue_time = ut_clock_time_get(); + for (size_t i = 0; i < cnt; i++) { + simple_data[i] = ut_malloc(UT_MODULE_DATA, sizeof(*simple_data[i])); + if (data_type == UT_DATA_MAGIC_TYPE) { + simple_data[i]->data = UT_DATA_MAGIC; + } else { + simple_data[i]->data = (uintptr_t)(simple_data[i]); + } + simple_data[i]->enqueue_time = enqueue_time; + } + + return simple_data; +} + +void ut_data_destory(struct ut_data **data, size_t cnt) { + for (size_t i = 0; i < cnt; i++) { + ut_free(UT_MODULE_DATA, data[i]); + } + ut_free(UT_MODULE_DATA, data); +} + +uint32_t ut_exec_enqueue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, + struct ut_metric *op_use_diff, uint16_t thread_idx) { + uint32_t enqueue_cnt = 0; + struct ut_metric op_use_start = ut_clock_time_get(); + uint32_t wait_consumed = 0; + enqueue_cnt = q->enqueue_burst_f(q->ring, (void **)data, burst_cnt, thread_idx, &wait_consumed); + *op_use_diff = ut_clock_time_sub(ut_clock_time_get(), op_use_start); + + return enqueue_cnt; +} + +uint32_t ut_exec_dequeue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, struct ut_metric *op_use_diff) { + uint32_t dequeue_cnt = 0; + + struct ut_metric op_use_start = ut_clock_time_get(); + dequeue_cnt = q->dequeue_burst_f(q->ring, (void **)data, burst_cnt, NULL); + *op_use_diff = ut_clock_time_sub(ut_clock_time_get(), op_use_start); + + return dequeue_cnt; +} + +void *ut_thread_producer_start(void *arg) { + uint32_t enqueue_cnt = 0; + uint64_t ok_cnt = 0; + uint64_t run_times = 0; + struct ut_thread_arg *t_arg = (struct ut_thread_arg *)arg; + struct ut_info_s *info = t_arg->info; + struct ut_cfg *cfg = &info->cfg; + struct ut_queue *q = t_arg->q; + struct ut_exit_data *exit_data = ut_exit_data_create(t_arg); + + char thread_name[128] = {0}; + uint64_t op_ok_latency_ns = 0; + uint64_t op_err_latency_ns = 0; + uint64_t run_ok_times = cfg->run.run_ok_times / cfg->ring.producer_cnt; + struct ut_metric op_latency = {0}; + snprintf(thread_name, sizeof(thread_name), "producer:%lu", exit_data->thread_id); + prctl(PR_SET_NAME, thread_name); + if (ut_setaffinity(t_arg->core) != BBQ_OK) { + UT_ERR_LOG("ut_setaffinity error"); + exit(-1); + } + + ut_wait_all_threads_ready(&info->ctl); + UT_INFO_LOG("producer thread:%lx, core:%d", exit_data->thread_id, t_arg->core); + + exit_data->metric_start = ut_clock_time_get(); + while (true) { + if ((run_ok_times > 0 && ok_cnt >= run_ok_times) || (!info->ctl.running)) { + // 控制次数的循环或运行时间到了 + break; + } + + if (cfg->ring.workload == UT_WORKLOAD_SIMPLE) { + enqueue_cnt = ut_exec_enqueue(q, exit_data->simple_data, cfg->ring.burst_cnt, &op_latency, t_arg->thread_idx); + } else { + struct ut_data **data = ut_data_create(cfg->ring.burst_cnt, UT_DATA_UINTPTR_TYPE); + if (data == NULL) { + UT_ERR_LOG("malloc falied"); + exit(-1); + } + + enqueue_cnt = ut_exec_enqueue(q, data, cfg->ring.burst_cnt, &op_latency, t_arg->thread_idx); + // 释放未入队的内存 + for (uint32_t i = enqueue_cnt; i < cfg->ring.burst_cnt; i++) { + ut_free(UT_MODULE_DATA, data[i]); + } + + ut_free(UT_MODULE_DATA, data); + } + + if (enqueue_cnt > 0) { + ok_cnt += enqueue_cnt; + op_ok_latency_ns += ut_clock_time_to_ns(&op_latency); + } else { + op_err_latency_ns += ut_clock_time_to_ns(&op_latency); + } + + run_times++; + } + + exit_data->metric_end = ut_clock_time_get(); + exit_data->run_times = run_times; + exit_data->ok_cnt = ok_cnt; + + exit_data->op_ok_latency_ns = op_ok_latency_ns; + exit_data->op_err_latency_ns = op_err_latency_ns; + atomic_fetch_add(&info->ctl.producer_exit, 1); + + UT_DBG_LOG("producer-----> en_ok:%lu", ok_cnt); + pthread_exit(exit_data); +} + +void *ut_thread_consumer_start(void *arg) { + uint32_t deq_cnt = -1; + uint64_t ok_cnt = 0; + uint64_t run_times = 0; + struct ut_thread_arg *t_arg = (struct ut_thread_arg *)arg; + struct ut_info_s *info = t_arg->info; + struct ut_cfg *cfg = &info->cfg; + struct ut_queue *q = t_arg->q; + struct ut_exit_data *exit_data = ut_exit_data_create(t_arg); + uint64_t latency_ns = 0; + struct ut_metric op_latency = {0}; + uint64_t op_ok_latency_ns = 0; + uint64_t op_err_latency_ns = 0; + uint64_t data_error_cnt = 0; + char thread_name[128] = {0}; + struct ut_data **deq_data = ut_malloc(UT_MODULE_DATA, sizeof(*deq_data) * cfg->ring.entries_cnt); + + snprintf(thread_name, sizeof(thread_name), "consumer:%lu", exit_data->thread_id); + prctl(PR_SET_NAME, thread_name); + if (ut_setaffinity(t_arg->core) != BBQ_OK) { + UT_ERR_LOG("ut_setaffinity error"); + exit(-1); + } + + ut_wait_all_threads_ready(&info->ctl); + UT_INFO_LOG("consumer thread:%lx, core:%d", exit_data->thread_id, t_arg->core); + + exit_data->metric_start = ut_clock_time_get(); + + while (true) { + if (ut_all_producer_exit(info) && deq_cnt == 0) { + // 运行时间到了或是所有生产者退出了,检查生产者是否全部退出,且队列被消费完了 + break; + } + + deq_cnt = ut_exec_dequeue(q, deq_data, cfg->ring.burst_cnt, &op_latency); + if (deq_cnt > 0) { + for (uint32_t i = 0; i < deq_cnt; i++) { + struct ut_data *data = deq_data[i]; + if (cfg->ring.workload == UT_WORKLOAD_SIMPLE) { + if (data->data != UT_DATA_MAGIC) { + UT_ERR_LOG("the obtained data is not consistent with the expectation, expect:%u actual:%lu", UT_DATA_MAGIC, data->data); + exit_data->data_error_cnt += 1; + } + } else { + struct ut_metric latency = ut_clock_time_sub(ut_clock_time_get(), data->enqueue_time); + if (ut_clock_time_is_zero(&data->enqueue_time)) { + UT_ERR_LOG("enqueue_time is 0"); + exit(-1); + } + + if (data->data != (uintptr_t)data) { + UT_ERR_LOG("the obtained data is not consistent with the expectation, expect:%lu actual:%lu", (uintptr_t)data, data->data); + data_error_cnt += 1; + } + + latency_ns += ut_clock_time_to_ns(&latency); + ut_free(UT_MODULE_DATA, data); + } + } + ok_cnt += deq_cnt; + op_ok_latency_ns += ut_clock_time_to_ns(&op_latency); + } else { + op_err_latency_ns += ut_clock_time_to_ns(&op_latency); + } + + run_times++; + } + + exit_data->metric_end = ut_clock_time_get(); + exit_data->run_times = run_times; + exit_data->ok_cnt = ok_cnt; + exit_data->latency_ns = latency_ns; + exit_data->op_ok_latency_ns = op_ok_latency_ns; + exit_data->op_err_latency_ns = op_err_latency_ns; + exit_data->data_error_cnt = data_error_cnt; + + ut_free(UT_MODULE_DATA, deq_data); + UT_DBG_LOG("consumer-----> de_ok:%lu", ok_cnt); + pthread_exit(exit_data); +} + +void ut_wait_all_threads_exit(struct ut_info_s *info, uint32_t thread_cnt, pthread_t *threads, struct ut_exit_data **exit_data) { + if (info->cfg.run.run_time > 0) { + UT_DBG_LOG("sleep %lus, and notify all threads to exit...", info->cfg.run.run_time); + sleep(info->cfg.run.run_time); + info->ctl.running = false; + } + + for (uint32_t i = 0; i < thread_cnt; i++) { + pthread_join(threads[i], (void **)(&exit_data[i])); // 等待每个线程结束 + } +} +void ut_one_thread_create(struct ut_info_s *info, struct ut_queue *q, enum ut_thread_type ttype, int core, uint16_t thread_id, pthread_t *thread) { + UT_DBG_LOG("thread type:%d core:%d", ttype, core); + struct ut_thread_arg *arg = (struct ut_thread_arg *)ut_malloc(UT_MODULE_COMMON, sizeof(struct ut_thread_arg)); // 线程回收时free + arg->info = info; + arg->q = q; + arg->ttype = ttype; + arg->core = core; + arg->thread_idx = thread_id; + + if (ttype == UT_THREAD_PRODUCER) { + pthread_create(thread, NULL, ut_thread_producer_start, arg); + } else { + pthread_create(thread, NULL, ut_thread_consumer_start, arg); + } +} + +#define CORE_ID_CHK_SET(core_id, max_id) \ + do { \ + core_id = (core_id + 1) <= max_id ? (core_id + 1) : core_id; \ + } while (0) + +pthread_t *ut_threads_create(struct ut_info_s *info, struct ut_queue *q) { + // 创建生产者消费者线程 + uint16_t thread_id = 0; + struct ut_cfg *cfg = &info->cfg; + int core_id = cfg->base.core_begin; + size_t thread_cnt = cfg->ring.producer_cnt + cfg->ring.consumer_cnt; + pthread_t *threads = (pthread_t *)ut_malloc(UT_MODULE_COMMON, sizeof(pthread_t) * thread_cnt); // 存储所有线程ID的数组 + + pthread_barrier_init(&info->ctl.all_threads_start, NULL, thread_cnt); + info->ctl.running = true; + info->ctl.producer_exit = ATOMIC_VAR_INIT(0); + + // MPSC 或 SPMC 场景在第一个核心/超线程上分配单个生产者或消费者,然后将其他线程按顺序分配给核心/超线程。 + // MPMC,我们将生产者和消费者一一交错分配 + // 如果数量不同,则在最后分配剩余部分。 + if (cfg->ring.producer_cnt == 1 && cfg->ring.consumer_cnt >= 1) { + // SPMC,第一个核心给生产者,其他分配给消费者 + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + for (uint32_t i = 0; i < cfg->ring.consumer_cnt; i++) { + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + } + } else if (cfg->ring.consumer_cnt == 1 && cfg->ring.producer_cnt >= 1) { + // MPSC,第一个核心给消费者,其他分配给生产者 + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + for (uint32_t i = 0; i < cfg->ring.producer_cnt; i++) { + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + } + } else { + // MPMC 或 只有生产者 或这有消费者,核心交错分配 + uint32_t pcnt = cfg->ring.producer_cnt; // 生产者个数 + uint32_t ccnt = cfg->ring.consumer_cnt; // 消费者个数 + for (core_id = cfg->base.core_begin; core_id < cfg->base.core_end && pcnt > 0 && ccnt > 0;) { + if ((core_id & 1) == 0) { + // 偶数 + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + pcnt--; + } else { + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + ccnt--; + } + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + } + + for (uint32_t i = 0; i < pcnt; i++) { + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + } + + for (uint32_t i = 0; i < ccnt; i++) { + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + } + } + + return threads; +} + +void ut_threads_destory(struct ut_info_s *info, pthread_t *threads) { + pthread_barrier_destroy(&info->ctl.all_threads_start); + ut_free(UT_MODULE_COMMON, threads); +} + +void ut_merge_data_detail(struct ut_merge_data *merge, struct ut_exit_data *exit_data) { + merge->run_times += exit_data->run_times; + merge->ok_cnt += exit_data->ok_cnt; + merge->latency_ns += exit_data->latency_ns; + merge->op_err_latency_ns = exit_data->op_err_latency_ns; + merge->op_ok_latency_ns += exit_data->op_ok_latency_ns; + merge->data_error_cnt += exit_data->data_error_cnt; +} + +void ut_merge_all_data(struct ut_exit_data **exit_data, uint32_t thread_cnt, struct ut_merge_s *merge) { + struct ut_metric p_start = {0}; + struct ut_metric p_end = {0}; + struct ut_metric c_start = {0}; + struct ut_metric c_end = {0}; + + for (uint32_t i = 0; i < thread_cnt; i++) { + // 根据生产者/消费者 线程最早开始和最晚结束,记录时间 + if (exit_data[i]->arg->ttype == UT_THREAD_PRODUCER) { + if (ut_clock_time_is_zero(&p_start) || ut_timespec_is_after(&p_start.timestamp, &exit_data[i]->metric_start.timestamp)) { + p_start = exit_data[i]->metric_start; + } + + if (ut_timespec_is_after(&exit_data[i]->metric_start.timestamp, &p_end.timestamp)) { + p_end = exit_data[i]->metric_end; + } + + ut_merge_data_detail(&merge->producer, exit_data[i]); + } else { + if (ut_clock_time_is_zero(&c_start) || ut_timespec_is_after(&c_start.timestamp, &exit_data[i]->metric_start.timestamp)) { + c_start = exit_data[i]->metric_start; + } + + if (ut_timespec_is_after(&exit_data[i]->metric_start.timestamp, &c_end.timestamp)) { + c_end = exit_data[i]->metric_end; + } + + ut_merge_data_detail(&merge->consumer, exit_data[i]); + } + } + + merge->producer.use_time = ut_clock_time_sub(p_end, p_start); + merge->consumer.use_time = ut_clock_time_sub(c_end, c_start); +}
\ No newline at end of file diff --git a/bbq/unittest/ut_bbq_func.h b/bbq/unittest/ut_bbq_func.h new file mode 100644 index 0000000..322f2cf --- /dev/null +++ b/bbq/unittest/ut_bbq_func.h @@ -0,0 +1,302 @@ +/* + * @Author: liuyu + * @LastEditTime: 2024-07-07 21:57:13 + * @Email: [email protected] + * @Describe: TODO + */ +#pragma once + +#include "bbq.h" +#include <pthread.h> + +#include <pthread.h> +#include <stdbool.h> +#include <stdint.h> +#include <stdio.h> +#include <time.h> + +#ifndef __cplusplus +// C +#include <stdatomic.h> +#endif + +enum ut_thread_type { + UT_THREAD_PRODUCER, + UT_THREAD_CONSUMER, + UT_THREAD_TYPE_MAX, +}; + +struct ut_metric { + struct timespec timestamp; // 系统时间戳 + // uint64_t cycles; // cpu运行的cycle +}; + +struct ut_report { + uint64_t throughput; // 吞吐量:每秒消耗的条目总数。 + double data_latency; // 数据延迟:每个数据在队列中停留的平均时间。 + double op_latency; // 操作延迟:每个入队或出队操作的平均延迟。 + double *fairness; // 公平性:每个生产者/消费者的吞吐量(占总吞吐的百分比) + double full_empty; // 队列满时入队的延迟/队列空时出队的延迟(仅用于简单工作负载)。 + uint64_t oversubscription; // 比核心/超线程更多的生产者和消费者的吞吐量 +}; + +enum ut_workload { + UT_WORKLOAD_SIMPLE, // 简单负载,每个生产者或消费者都有自己的线程,它们在循环中不断执行入队或出队操作。每次出队后都会验证数据。 + UT_WORKLOAD_COMPLEX, // 复杂负载,基于简单工作负载。生产者和消费者为数据分配空间,执行入队和出队,然后手动释放 + UT_WORKLOAD_MAX, +}; + +#define UT_RING_TYPE_BBQ_STR "bbq" +#define UT_RING_TYPE_DPDK_STR "dpdk" +#define UT_RING_TYPE_RMIND_STR "rmind" +enum ut_ring_type { + UT_RING_TYPE_BBQ, + UT_RING_TYPE_DPDK, + UT_RING_TYPE_RMIND, + UT_RING_TYPE_MAX, +}; + +struct ut_cfg_base { + char name[128]; // 配置文件名 + char introduce[128]; // 测试配置说明 + uint16_t core_begin; // 起始核心 + uint16_t core_end; // 终止核心 +}; + +struct ut_cfg_ring { + enum ut_ring_type ring_type; // ring buffer类型 + uint32_t producer_cnt; // 生产者个数 + uint32_t consumer_cnt; // 消费者个数 + enum ut_workload workload; // 负载模式 + uint64_t entries_cnt; // ring初始化时分配entry的个数 + uint32_t block_count; // bbq block个数,为0时表示根据entries_cnt自动计算 + uint32_t burst_cnt; // 批量出入队个数 +}; + +struct ut_cfg_run { + uint64_t run_ok_times; // 成功入队/入队次数 + uint64_t run_time; // 整体运行时间,单位秒 +}; + +struct ut_cfg { + struct ut_cfg_base base; + struct ut_cfg_ring ring; + struct ut_cfg_run run; +}; + +struct ut_ctl { + volatile bool running; // 默认为true,当设置为false,即所有生产者消费者即将退出 + pthread_barrier_t all_threads_start; +#ifndef __cplusplus + // C + atomic_uint producer_exit; +#else + // C++ 为了兼容gtest测试 + std::atomic<uint32_t> producer_exit; +#endif +}; + +struct ut_info_s { + struct ut_cfg cfg; + struct ut_ctl ctl; +}; + +enum ut_module { + UT_MODULE_UTEST, + UT_MODULE_COMMON, + UT_MODULE_DATA, + UT_MODULE_BCM, + UT_MODULE_TABLE, + UT_MODULE_RMIND, + UT_MODULE_MAX, +}; + +#ifdef UT_DEBUG +#define UT_DBG_LOG(fmt, ...) \ + do { \ + printf("[DBG][%s:%d:%s]" fmt "\n", __func__, __LINE__, __FILE__, ##__VA_ARGS__); \ + } while (0) + +#else +#define UT_DBG_LOG(fmt, ...) \ + do { \ + } while (0) +#endif + +#define UT_ERR_LOG(fmt, ...) \ + do { \ + printf("\x1b[31m [ERR][%s:%d:%s]" fmt "\x1b[0m\n", __func__, __LINE__, __FILE__, ##__VA_ARGS__); \ + } while (0) + +#define UT_INFO_LOG(fmt, ...) \ + do { \ + printf("[INFO][%s:%d:%s]" fmt "\n", __func__, __LINE__, __FILE__, ##__VA_ARGS__); \ + } while (0) + +#define UT_AVOID_WARNING(param) ((void)param) + +#define UT_PTR_ARRAY_DATA_INIT(table, t_type, t_count) \ + do { \ + if (table != NULL) { \ + memset(table, 0, sizeof(t_type *) * t_count); \ + for (uint32_t i = 0; i < t_count; i++) { \ + table[i] = (t_type *)ut_malloc(UT_MODULE_TABLE, sizeof(t_type)); \ + if (table[i] == NULL) { \ + for (uint32_t j = 0; j < i; j++) { \ + ut_free(UT_MODULE_TABLE, table[j]); \ + table[j] = NULL; \ + } \ + ut_free(UT_MODULE_TABLE, table); \ + break; \ + } \ + *table[i] = (t_type)UT_DATA_MAGIC; \ + } \ + } \ + } while (0) + +#define UT_PTR_ARRAY_DATA_DESTORY(table, t_count) \ + do { \ + if (table != NULL) { \ + for (uint32_t i = 0; i < t_count; i++) { \ + ut_free(UT_MODULE_TABLE, table[i]); \ + table[i] = NULL; \ + } \ + } \ + } while (0) + +#define UT_DOUBLE_PTR_DATA_INIT(table, t_type, t_count) \ + do { \ + table = (t_type **)ut_malloc(UT_MODULE_TABLE, sizeof(t_type *) * t_count); \ + if (table != NULL) { \ + UT_PTR_ARRAY_DATA_INIT(table, t_type, t_count); \ + } \ + } while (0) + +#define UT_DOUBLE_PTR_DATA_DESTORY(table, t_count) \ + do { \ + if (table != NULL) { \ + UT_PTR_ARRAY_DATA_DESTORY(table, t_count); \ + ut_free(UT_MODULE_TABLE, table); \ + table = NULL; \ + } \ + } while (0) + +#define UT_ARRAY_DATA_INIT(table, t_count) \ + do { \ + for (int i = 0; i < t_count; i++) { \ + table[i] = UT_DATA_MAGIC; \ + } \ + } while (0) + +#define UT_DATA_MAGIC 0x1F // 为了兼容所有类型的数据,存储1字节大小的数据 + +typedef void (*ut_ring_free_f)(void *ring); +typedef int (*ut_ring_enqueue_f)(void *ring, void *obj); +typedef int (*ut_ring_dequeue_f)(void *ring, void *obj); +typedef uint32_t (*ut_enqueue_burst_f)(void *ring, void **obj_table, uint32_t n, uint16_t thread_idx, uint32_t *wait_consumed); +typedef uint32_t (*ut_dequeue_burst_f)(void *ring, void **obj_table, uint32_t n, uint32_t *wait_consumed); +typedef bool (*ut_ring_empty_f)(void *ring); + +struct ut_queue { + void *ring; + enum ut_ring_type ring_type; + ut_ring_free_f ring_free_f; + ut_ring_enqueue_f enqueue_f; + ut_ring_dequeue_f dequeue_f; + ut_enqueue_burst_f enqueue_burst_f; + ut_dequeue_burst_f dequeue_burst_f; +}; + +struct ut_thread_arg { + int core; + uint16_t thread_idx; // 线程索引,不是pthread_id + enum ut_thread_type ttype; + struct ut_info_s *info; + struct ut_queue *q; +}; + +struct ut_data { + uint64_t data; // 数据 + struct ut_metric enqueue_time; // 入队时间 +}; + +struct ut_exit_data { + pthread_t thread_id; + uint64_t run_times; + uint64_t ok_cnt; + uint64_t latency_ns; // 仅消费者有效,数据停留的时延 + uint64_t op_ok_latency_ns; // 成功操作的时延 + uint64_t op_err_latency_ns; // 操作失败的时延, 如满队入队,空队出队 + uint64_t data_error_cnt; // 发生过至少一次数据不一致的次数 + size_t simple_data_cnt; + struct ut_thread_arg *arg; + struct ut_metric metric_start; + struct ut_metric metric_end; + struct ut_data **simple_data; +}; + +struct ut_merge_data { + uint64_t run_times; + uint64_t ok_cnt; + uint64_t latency_ns; // 仅消费者有效,数据停留的时延 + uint64_t op_ok_latency_ns; // 成功操作的时延 + uint64_t op_err_latency_ns; // 操作失败的时延, 如满队入队,空队出队 + uint64_t data_error_cnt; // 发生过至少一次数据不一致的次数 + struct ut_metric use_time; +}; + +struct ut_merge_s { + struct ut_merge_data producer; + struct ut_merge_data consumer; +}; + +enum ut_data_type { + UT_DATA_MAGIC_TYPE, + UT_DATA_UINTPTR_TYPE, +}; +extern struct ut_metric ut_clock_time_get(); +extern struct ut_metric ut_clock_time_sub(struct ut_metric now, struct ut_metric last); +extern int ut_load_config(const char *config, const char *ring_type, uint32_t burst_cnt, struct ut_cfg *cfg); +extern enum ut_workload ut_workload_str2enum(const char *workload); +extern enum ut_ring_type ut_ring_type_str2enum(const char *ring_type); +extern bool ut_clock_time_is_zero(struct ut_metric *metric); +extern bool ut_timespec_is_after(const struct timespec *a, const struct timespec *b); +extern char *ut_ring_type_enum2str(enum ut_ring_type ring_type); +extern uint64_t ut_clock_time_to_ns(struct ut_metric *metric); +extern double ut_clock_time_to_double(struct ut_metric *metric); +extern void *ut_malloc(enum ut_module module, size_t size); +extern void ut_free(enum ut_module module, void *ptr); +extern void ut_memory_counter_print(); +extern void ut_memory_counter_clear(); +extern bool ut_malloc_free_equal(); +extern int ut_setaffinity(int core_id); +extern void *ut_malloc_def_callback(int32_t socket_id __attribute__((unused)), size_t size); +extern void ut_free_def_callback(void *ptr, size_t size __attribute__((unused))); +extern void ut_threads_destory(struct ut_info_s *info, pthread_t *threads); +extern pthread_t *ut_threads_create(struct ut_info_s *info, struct ut_queue *q); +extern void ut_one_thread_create(struct ut_info_s *info, struct ut_queue *q, enum ut_thread_type ttype, int core, uint16_t thread_id, pthread_t *thread); +extern void ut_wait_all_threads_exit(struct ut_info_s *info, uint32_t thread_cnt, pthread_t *threads, struct ut_exit_data **exit_data); +extern void *ut_thread_consumer_start(void *arg); +extern void *ut_thread_producer_start(void *arg); +extern uint32_t ut_exec_dequeue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, struct ut_metric *op_use_diff); +extern uint32_t ut_exec_enqueue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, struct ut_metric *op_use_diff, uint16_t thread_idx); +extern void ut_exit_data_destory(struct ut_exit_data *data); +extern struct ut_exit_data *ut_exit_data_create(struct ut_thread_arg *t_arg); +extern void ut_wait_all_threads_ready(struct ut_ctl *ctl); +extern void ut_queue_destory(struct ut_queue *q); +extern int ut_queue_init_bbq(struct ut_cfg *cfg, struct ut_queue *q); +extern void ut_merge_all_data(struct ut_exit_data **exit_data, uint32_t thread_cnt, struct ut_merge_s *merge); +extern uint64_t bbq_head_idx(struct bbq *q, uint64_t x); +extern uint64_t bbq_cur_off(struct bbq *q, uint64_t x); +extern uint64_t bbq_head_vsn(struct bbq *q, uint64_t x); +extern uint64_t bbq_cur_vsn(struct bbq *q, uint64_t x); +extern struct ut_data **ut_data_create(size_t cnt, enum ut_data_type); +extern void ut_data_destory(struct ut_data **data, size_t cnt); +extern bool bbq_debug_check_array_bounds(struct bbq *q); +extern struct bbq *bbq_create_elem_with_bnbs(const char *name, uint32_t bn, + uint32_t bs, size_t obj_size, + int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f); +extern struct bbq *bbq_create_with_bnbs(const char *name, uint32_t bn, uint32_t bs, + int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f);
\ No newline at end of file |
