diff options
Diffstat (limited to 'bbq/unittest')
| -rw-r--r-- | bbq/unittest/CMakeLists.txt | 25 | ||||
| -rw-r--r-- | bbq/unittest/ut_bbq.cc | 1189 | ||||
| -rw-r--r-- | bbq/unittest/ut_bbq_func.c | 615 | ||||
| -rw-r--r-- | bbq/unittest/ut_bbq_func.h | 302 |
4 files changed, 2131 insertions, 0 deletions
diff --git a/bbq/unittest/CMakeLists.txt b/bbq/unittest/CMakeLists.txt new file mode 100644 index 0000000..fedd026 --- /dev/null +++ b/bbq/unittest/CMakeLists.txt @@ -0,0 +1,25 @@ +cmake_minimum_required(VERSION 3.0) +project(BBQ_TESTS) + + +# 指定库路径 +link_directories(${LIB_PATH}) +# 指定头文件 +include_directories( + ${CMAKE_CURRENT_SOURCE_DIR}/common/ +) + +# 链接静态库 +link_libraries(bbq) +# 指定可执行文件输出路径 +set(EXECUTABLE_OUTPUT_PATH ${EXEC_PATH}) + +# 搜索当前cmake文件所在目录下的c文件 +file(GLOB SRC_C_LIST "${CMAKE_CURRENT_SOURCE_DIR}/*.c") +file(GLOB SRC_LIST "${CMAKE_CURRENT_SOURCE_DIR}/*.cc") +list(APPEND SRC_LIST ${SRC_C_LIST}) + +add_executable(bbq_unittest ${SRC_LIST}) # 添加可执行程序 +target_link_libraries(bbq_unittest gtest gtest_main pthread) # 链接gtest库 + +add_test(bbq_unittest ${EXEC_PATH}/bbq_unittest) # 添加测试,保证make test可以执行该测试用例 diff --git a/bbq/unittest/ut_bbq.cc b/bbq/unittest/ut_bbq.cc new file mode 100644 index 0000000..d244894 --- /dev/null +++ b/bbq/unittest/ut_bbq.cc @@ -0,0 +1,1189 @@ +/* + * @Author: liuyu + * @LastEditTime: 2024-07-07 21:59:54 + * @Email: [email protected] + * @Describe: 简单的测试用例,测试基本功能 + */ + +#include "gtest/gtest.h" +extern "C" { +#include "ut_bbq_func.h" +#include <math.h> +extern bool bbq_debug_check_array_bounds(struct bbq *q); +extern void bbq_struct_print(struct bbq *q); +extern uint32_t bbq_enqueue_burst_elem_2d_array(struct bbq *q, void *const *obj_table, uint32_t n, uint32_t *wait_consumed); +extern bool bbq_check_power_of_two(int n); +extern unsigned bbq_ceil_log2(uint64_t x); +extern uint64_t bbq_fetch_max(union bbq_atomic64 *atomic, uint64_t upd, bool single); +extern bool ut_malloc_free_equal(); +extern int bbq_bnbs_calc(uint32_t entries, uint32_t *bn, uint32_t *bs); +extern void bbq_atomic64_store(union bbq_atomic64 *atomic, uint64_t value, bool single); +extern uint64_t bbq_atomic64_load(union bbq_atomic64 *atomic, bool single); +extern bool bbq_debug_check_array_bounds(struct bbq *q); +extern struct bbq *bbq_create_elem_with_bnbs(const char *name, uint32_t bn, uint32_t bs, + size_t obj_size, int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f); +extern uint64_t bbq_atomic64_load(union bbq_atomic64 *atomic, bool single); +} + +#define BUF_CNT 4096 + +class ut_bbq : public testing::Test { + protected: + virtual void SetUp() override { + // 1.清空内存malloc/free统计 + ut_memory_counter_clear(); + + // 2.入队空间初始化 + UT_DOUBLE_PTR_DATA_INIT(enq_table1, uint16_t, BUF_CNT); + UT_PTR_ARRAY_DATA_INIT(enq_table2, uint16_t, BUF_CNT); + UT_ARRAY_DATA_INIT(enq_table3, BUF_CNT); + } + + virtual void TearDown() override { + // 1.释放测试数据 + UT_DOUBLE_PTR_DATA_DESTORY(enq_table1, BUF_CNT); + UT_PTR_ARRAY_DATA_DESTORY(enq_table2, BUF_CNT); + + // 2.内存泄漏检测 + EXPECT_TRUE(ut_malloc_free_equal()); + } + + // 入队数据 + uint16_t **enq_table1; + uint16_t *enq_table2[BUF_CNT]; + uint16_t enq_table3[BUF_CNT]; +}; + +TEST_F(ut_bbq, single_retry_new_cp_ptr) { + int ret = 0; + uint64_t cnt = 0; + uint16_t *deq_data = NULL; + + // 创建队列 + struct bbq *q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, + BBQ_F_RETRY_NEW, ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue(q, (void **)&enq_table1[i]) == 0) { + cnt++; + } + } + + // 部分入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue(q, (void **)&enq_table2[i]) == 0) { + cnt++; + } + } + + // 入队成功个数等于队列总数 + EXPECT_EQ(cnt, BUF_CNT); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue(q, (void **)&deq_data); + if (ret == 0) { + EXPECT_EQ(*deq_data, UT_DATA_MAGIC); + cnt++; + } + } + // 全部出队成功 + EXPECT_EQ(cnt, BUF_CNT); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + bbq_destory(q); +} + +TEST_F(ut_bbq, single_retry_new_cp_value) { + int ret = 0; + uint64_t cnt = 0; + uint16_t deq_data; + + // 创建队列 + struct bbq *q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue(q, (void **)enq_table1[i]) == 0) { + cnt++; + } + } + + // 部分入队成功 + for (uint32_t i = 0; i < 4000; i++) { + if (bbq_enqueue_elem(q, enq_table2[i]) == 0) { + cnt++; + } + } + + // 入队成功个数等于队列总数 + EXPECT_EQ(cnt, BUF_CNT); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue_elem(q, &deq_data); + if (ret == 0) { + EXPECT_EQ(deq_data, UT_DATA_MAGIC); + cnt++; + } + } + // 全部出队成功 + EXPECT_EQ(cnt, BUF_CNT); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue_elem(q, &deq_data), BBQ_ERR_EMPTY); + bbq_destory(q); +} + +TEST_F(ut_bbq, single_drop_old_cp_pointer) { + int ret = 0; + uint64_t cnt = 0; + uint16_t *deq_data = NULL; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + + // 创建队列 + struct bbq *q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, + BBQ_F_DROP_OLD, ut_malloc_def_callback, + ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功,入队个数是BUF_CNT的整数倍,因此到了一个边界,刚好与消费者位置一致(套了loop圈) + uint32_t loop = 3; + for (uint32_t n = 0; n < loop; n++) { + for (uint32_t i = 0; i < first_cnt; i++) { + ret = bbq_enqueue(q, (void **)&enq_table1[i]); + if (ret == 0) { + cnt++; + } + } + } + EXPECT_EQ(cnt, first_cnt * loop); + + // 全部入队成功 + cnt = 0; + for (uint32_t i = 0; i < second_cnt; i++) { + if (bbq_enqueue(q, (void **)&enq_table2[i]) == 0) { + cnt++; + } + } + EXPECT_EQ(cnt, second_cnt); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue(q, (void **)&deq_data); + if (ret == 0) { + EXPECT_EQ(*deq_data, UT_DATA_MAGIC); + cnt++; + } + } + + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。 + EXPECT_EQ(cnt, second_cnt - q->bs); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue(q, (void **)&deq_data), BBQ_ERR_EMPTY); + + bbq_destory(q); +} + +TEST_F(ut_bbq, single_drop_old_cp_value) { + int ret = 0; + uint64_t cnt = 0; + uint16_t deq_data; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + + // 创建队列 + struct bbq *q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 空队出队失败 + EXPECT_EQ(bbq_dequeue_elem(q, &deq_data), BBQ_ERR_EMPTY); + + // 全部入队成功,入队个数是BUF_CNT的整数倍,因此到了一个边界,刚好与消费者位置一致(套了loop圈) + uint32_t loop = 3; + for (uint32_t n = 0; n < loop; n++) { + for (uint32_t i = 0; i < first_cnt; i++) { + ret = bbq_enqueue_elem(q, enq_table1[i]); + if (ret == 0) { + cnt++; + } + } + } + EXPECT_EQ(cnt, first_cnt * loop); + + // 全部入队成功 + cnt = 0; + for (uint32_t i = 0; i < second_cnt; i++) { + if (bbq_enqueue_elem(q, enq_table2[i]) == 0) { + cnt++; + } + } + EXPECT_EQ(cnt, second_cnt); + + cnt = 0; + for (uint32_t i = 0; i < BUF_CNT; i++) { + ret = bbq_dequeue_elem(q, &deq_data); + if (ret == 0) { + EXPECT_EQ(deq_data, UT_DATA_MAGIC); + cnt++; + } + } + + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。 + EXPECT_EQ(cnt, second_cnt - q->bs); + // 空队出队失败 + EXPECT_EQ(bbq_dequeue_elem(q, &deq_data), BBQ_ERR_EMPTY); + + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_retry_new_cp_value) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = 4000; + uint64_t second_cnt = 1000; + uint16_t deq_table1[BUF_CNT] = {0}; + uint16_t *deq_table2 = (uint16_t *)ut_malloc(UT_MODULE_DATA, sizeof(uint16_t) * BUF_CNT); + uint32_t wait_consumed = 0; + + // 创建队列 + q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(first_cnt, q->bn * q->bs); + + // 批量入队(全部成功) + ret1 = bbq_enqueue_burst_elem(q, (void const *)enq_table3, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(部分成功) + // 由于需要将最终的值入队列,二维数组里的值不连续,需要循环赋值。不推荐这个函数,但可用于特殊场景。 + ret2 = bbq_enqueue_burst_elem_2d_array(q, (void *const *)enq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, ret1 + ret2); + + // 出队列(全部成功) + ret1 = bbq_dequeue_burst_elem(q, (void *)deq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret2); + + // 出队列(部分成功) + ret2 = bbq_dequeue_burst_elem(q, (void *)deq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + for (uint32_t i = 0; i < ret2; i++) { + EXPECT_EQ(deq_table2[i], UT_DATA_MAGIC) << "i :" << i; + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + ut_free(UT_MODULE_DATA, deq_table2); + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_retry_new_cp_pointer) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = 4000; + uint64_t second_cnt = 1000; + uint32_t wait_consumed = 0; + uint16_t *deq_table1[BUF_CNT] = {0}; + uint16_t **deq_table2 = (uint16_t **)ut_malloc(UT_MODULE_DATA, sizeof(uint16_t *) * BUF_CNT); + + // 创建队列 + q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, + BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_LT(first_cnt, q->bn * q->bs); + + // 批量入队(全部成功) + ret1 = bbq_enqueue_burst(q, (void *const *)enq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(部分成功) + ret2 = bbq_enqueue_burst(q, (void *const *)enq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, ret1 + ret2); + + // 出队列(全部成功) + ret1 = bbq_dequeue_burst(q, (void **)deq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + EXPECT_EQ(wait_consumed, ret2); + + // 出队列(部分成功) + ret2 = bbq_dequeue_burst(q, (void **)deq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, BUF_CNT - ret1); + EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(*deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + for (uint32_t i = 0; i < ret2; i++) { + EXPECT_EQ(*deq_table2[i], UT_DATA_MAGIC) << "i :" << i; + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + ut_free(UT_MODULE_DATA, deq_table2); + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_drop_old_cp_pointer) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + uint32_t wait_consumed = 0; + uint16_t *deq_table1[BUF_CNT] = {0}; + uint16_t **deq_table2 = (uint16_t **)ut_malloc(UT_MODULE_DATA, sizeof(uint16_t *) * BUF_CNT); + + // 创建队列 + q = bbq_create("ut_bbq", BUF_CNT, BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_GT(second_cnt, q->bs); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 批量入队(全部成功,入队个数等于队列总容量,未发生覆盖) + ret1 = bbq_enqueue_burst(q, (void *const *)enq_table1, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + // EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(全部成功),覆盖了旧数据 + ret2 = bbq_enqueue_burst(q, (void *const *)enq_table2, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, second_cnt); + // EXPECT_EQ(wait_consumed, second_cnt - q->bs); + + // 出队列(部分成功) + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。本例中第一个完整块作废。 + ret1 = bbq_dequeue_burst(q, (void **)deq_table1, BUF_CNT, &wait_consumed); + EXPECT_EQ(ret1, second_cnt - q->bs); + // EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(*deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + // 此时生产者和消费者在同一块上,入队个数为队列容量的N倍,由于发生了覆盖,且依旧在同一块上,数据全作废 + for (uint32_t loop = 0; loop < 3; loop++) { + ret1 = bbq_enqueue_burst(q, (void *const *)enq_table1, BUF_CNT, &wait_consumed); + EXPECT_EQ(ret1, BUF_CNT); + EXPECT_TRUE(bbq_empty(q)); + EXPECT_EQ(wait_consumed, 0); + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + ut_free(UT_MODULE_DATA, deq_table2); + bbq_destory(q); +} + +TEST_F(ut_bbq, burst_drop_old_cp_value) { + struct bbq *q; + uint32_t ret1 = 0; + uint32_t ret2 = 0; + uint64_t first_cnt = BUF_CNT; + uint64_t second_cnt = 1000; + uint32_t wait_consumed = 0; + uint16_t deq_table1[BUF_CNT] = {0}; + + // 创建队列 + q = bbq_create_elem("ut_bbq", BUF_CNT, sizeof(uint16_t), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_GT(second_cnt, q->bs); + EXPECT_LT(second_cnt, q->bs * q->bn); + + // 批量入队(全部成功) + ret1 = bbq_enqueue_burst_elem(q, (void const *)enq_table3, first_cnt, &wait_consumed); + EXPECT_EQ(ret1, first_cnt); + // EXPECT_EQ(wait_consumed, ret1); + + // 批量入队(全部成功),覆盖了旧数据 + // 由于需要将最终的值入队列,二维数组里的值不连续,需要循环赋值。不推荐这个函数,但可用于特殊场景。 + ret2 = bbq_enqueue_burst_elem_2d_array(q, (void *const *)enq_table1, second_cnt, &wait_consumed); + EXPECT_EQ(ret2, second_cnt); + // EXPECT_EQ(wait_consumed, second_cnt - q->bs); + + // 出队列(部分成功) + // 一旦生产者追上了消费者,之前未消费的,以及当前块的数据全都作废了。 + ret1 = bbq_dequeue_burst_elem(q, (void *)deq_table1, BUF_CNT, &wait_consumed); + EXPECT_EQ(ret1, second_cnt - q->bs); + EXPECT_EQ(wait_consumed, 0); + + // 验证数据 + for (uint32_t i = 0; i < ret1; i++) { + EXPECT_EQ(deq_table1[i], UT_DATA_MAGIC) << "i :" << i; + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +typedef struct { + uint64_t thread_cnt; + bbq_atomic64 data; + aotmic_uint64 ready_thread_cnt; +} ut_fetch_arg; + +void *fetch_max_thread_func(void *arg) { + ut_fetch_arg *fetch_arg = (ut_fetch_arg *)arg; + fetch_arg->ready_thread_cnt.fetch_add(1); + + while (fetch_arg->ready_thread_cnt.load() != fetch_arg->thread_cnt) { + } + + uint64_t *ret = (uint64_t *)ut_malloc(UT_MODULE_UTEST, sizeof(*ret)); + // 不同线程写入不同的>3的数 + *ret = bbq_fetch_max(&fetch_arg->data, pthread_self() + 3, false); + pthread_exit(ret); +} + +TEST_F(ut_bbq, mpmc) { + struct ut_info_s info { + .cfg = { + .base = { + .name = {}, + .introduce = {}, + .core_begin = 0, + .core_end = 3, + }, + .ring = { + .ring_type = UT_RING_TYPE_BBQ, + .producer_cnt = 4, + .consumer_cnt = 4, + .workload = UT_WORKLOAD_SIMPLE, + .entries_cnt = 4096, + .block_count = 0, + .burst_cnt = 4, + }, + .run = { + .run_ok_times = 9000000, + .run_time = 0, + }, + }, + .ctl = { + .running = true, + .all_threads_start = {}, + .producer_exit = {}, + }, + }; + + // 队列初始化 + int ret = -1; + struct ut_queue q; + ret = ut_queue_init_bbq(&info.cfg, &q); + ASSERT_TRUE(ret == 0); + + // 创建线程 + pthread_t *threads = ut_threads_create(&info, &q); + ASSERT_TRUE(threads); + + // 等待所有线程完成,回收数据 + uint32_t thread_cnt = info.cfg.ring.producer_cnt + info.cfg.ring.consumer_cnt; + struct ut_exit_data **exit_data = (struct ut_exit_data **)ut_malloc(UT_MODULE_UTEST, sizeof(struct ut_exit_data **) * (thread_cnt)); + ut_wait_all_threads_exit(&info, thread_cnt, threads, exit_data); + + // 比较数据 + struct ut_merge_s merge; + memset(&merge, 0, sizeof(merge)); + ut_merge_all_data(exit_data, thread_cnt, &merge); + EXPECT_EQ(merge.consumer.data_error_cnt, 0); + EXPECT_EQ(merge.consumer.ok_cnt, merge.producer.ok_cnt); + + // 释放数据 + for (uint32_t i = 0; i < thread_cnt; i++) { + ut_exit_data_destory(exit_data[i]); + } + ut_free(UT_MODULE_UTEST, exit_data); + ut_threads_destory(&info, threads); + EXPECT_TRUE(bbq_debug_check_array_bounds((struct bbq *)q.ring)); + ut_queue_destory(&q); +} + +TEST_F(ut_bbq, bbq_fetch_max) { + uint64_t ret = 0; + ut_fetch_arg arg; + + bool single = false; + arg.data.m.store(0); + arg.thread_cnt = 0; + arg.ready_thread_cnt.store(0); + + bbq_atomic64_store(&arg.data, 1, single); // 初始化1 + arg.thread_cnt = 50; + + ret = bbq_fetch_max(&arg.data, 2, single); // max比较后设置为2 + EXPECT_EQ(bbq_atomic64_load(&arg.data, single), 2); + EXPECT_EQ(ret, 1); + + pthread_t *threads = (pthread_t *)ut_malloc(UT_MODULE_UTEST, sizeof(*threads) * arg.thread_cnt); + for (uint64_t i = 0; i < arg.thread_cnt; i++) { + // 多个线程同时fetch_max,输入 > 3的数据 + pthread_create(&threads[i], NULL, fetch_max_thread_func, (void *)&arg); + } + + int eq_cnt = 0; + for (uint64_t i = 0; i < arg.thread_cnt; i++) { + uint64_t *tret; + pthread_join(threads[i], (void **)&tret); // 等待每个线程结束 + if (*tret == 2) { + eq_cnt++; // 统计返回2的个数 + } + ut_free(UT_MODULE_UTEST, tret); + } + + // EXPECT_EQ(eq_cnt, 1); + ut_free(UT_MODULE_UTEST, threads); +} + +TEST_F(ut_bbq, power_of_two) { + uint32_t tmp = 0; + uint32_t max = pow(2, 32) - 1; + + EXPECT_FALSE(bbq_check_power_of_two(0)); + + tmp = 3; + for (uint32_t val = 5; val < max; val *= tmp) { + EXPECT_FALSE(bbq_check_power_of_two(val)); + if (val >= max / tmp) { + break; // 即将越界 + } + } + + tmp = 2; + for (uint32_t val = 1; val < max; val *= tmp) { + EXPECT_TRUE(bbq_check_power_of_two(val)); + if (val >= max / tmp) { + break; + } + } +} + +TEST_F(ut_bbq, bbq_block_number_calc) { + uint32_t tmp = 2; + uint32_t max = pow(2, 32) - 1; + uint32_t bn = 0, bs = 0; + int ret = 0; + + ret = bbq_bnbs_calc(1, &bn, &bs); + EXPECT_EQ(ret, BBQ_ERR_OUT_OF_RANGE); + + for (uint32_t val = 2; val < max; val *= tmp) { + ret = bbq_bnbs_calc(val, &bn, &bs); + EXPECT_EQ(ret, BBQ_OK); + if (val <= 128) { + EXPECT_EQ(bn, 2); + } else if (val <= 2048) { + EXPECT_EQ(bn, 4); + } else if (val <= 32768) { + EXPECT_EQ(bn, 8); + } else if (val <= 524288) { + EXPECT_EQ(bn, 16); + } else if (val <= 8388608) { + EXPECT_EQ(bn, 32); + } else if (val <= 134217728) { + EXPECT_EQ(bn, 64); + } else if (val <= 2147483648) { + EXPECT_EQ(bn, 128); + } else { + EXPECT_TRUE(0); // 异常 + } + + if (val >= max / tmp) { + break; + } + } +} + +#define OFFSETOF(type, member) ((size_t) & ((type *)0)->member) +#define PRINT_OFFSETOF(type, member) printf("Offset of '%s' in '%s' is %zu\n", #member, #type, OFFSETOF(type, member)) +#define PTR_ALIGNED_64(ptr) (((uintptr_t)ptr & (64 - 1)) == 0) +#define SIZE_ALIGNED_64(v) (((sizeof(v)) & (64 - 1)) == 0) + +TEST_F(ut_bbq, bbq_cache_line) { + + // 创建队列 + struct bbq *q = bbq_create("ut_bbq", 4096, BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 首地址64字节对齐 + EXPECT_EQ(PTR_ALIGNED_64(q), true); + + // 关键成员64字节对齐 + EXPECT_EQ(PTR_ALIGNED_64(&q->name), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->socket_id), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->phead.value), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->chead.value), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->blocks), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->blocks[0].committed), true); + EXPECT_EQ(PTR_ALIGNED_64(&q->blocks[0].entries), true); + + EXPECT_EQ(SIZE_ALIGNED_64(struct bbq_head), true); + EXPECT_EQ(SIZE_ALIGNED_64(struct bbq_block), true); + + // PRINT_OFFSETOF(struct bbq, name); + // PRINT_OFFSETOF(struct bbq, socket_id); + // PRINT_OFFSETOF(struct bbq, phead); + // PRINT_OFFSETOF(struct bbq, chead); + // PRINT_OFFSETOF(struct bbq, blocks); + + bbq_destory(q); +} + +void expect_phead(struct bbq *q, uint64_t idx, uint64_t vsn, int line) { + uint64_t ph = bbq_atomic64_load(&q->phead.value, q->prod_single); + EXPECT_EQ(bbq_head_idx(q, ph), idx) << "line: " << line; + EXPECT_EQ(bbq_head_vsn(q, ph), vsn) << "line: " << line; +} + +void expect_chead(struct bbq *q, uint64_t idx, uint64_t vsn, int line) { + uint64_t ch = bbq_atomic64_load(&q->chead.value, q->cons_single); + EXPECT_EQ(bbq_head_idx(q, ch), idx) << "line: " << line; + EXPECT_EQ(bbq_head_vsn(q, ch), vsn) << "line: " << line; +} + +void expect_eq_allocated(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t allocated = bbq_atomic64_load(&block->allocated, q->prod_single); + EXPECT_EQ(bbq_cur_off(q, allocated), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, allocated), vsn) << "line: " << line; +} + +void expect_eq_committed(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t committed = bbq_atomic64_load(&block->committed, q->prod_single); + EXPECT_EQ(bbq_cur_off(q, committed), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, committed), vsn) << "line: " << line; +} + +void expect_eq_consumed(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t consumed = bbq_atomic64_load(&block->consumed, q->cons_single); + EXPECT_EQ(bbq_cur_off(q, consumed), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, consumed), vsn) << "line: " << line; +} + +void expect_eq_reserved(struct bbq *q, bbq_block *block, uint64_t off, uint64_t vsn, int line) { + uint64_t reserved = bbq_atomic64_load(&block->reserved, q->cons_single); + EXPECT_EQ(bbq_cur_off(q, reserved), off) << "line: " << line; + EXPECT_EQ(bbq_cur_vsn(q, reserved), vsn) << "line: " << line; +} + +// 初始化状态 +TEST_F(ut_bbq, head_cursor_init) { + struct bbq *q; + uint32_t bn = 2; + uint32_t bs = 4; + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 1.初始化状态,除了第一个block外其他块的4个游标都指向最后一个条目 + + EXPECT_EQ(bbq_atomic64_load(&q->phead.value, q->prod_single), 0); + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + + expect_eq_allocated(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], 0, 0, __LINE__); + for (uint32_t i = 1; i < bn; i++) { + expect_eq_allocated(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[i], bs, 0, __LINE__); + } + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +void ut_produce_something(uint32_t produce_cnt) { + int ret = 0; + struct bbq *q; + uint32_t bn = 8; + uint32_t bs = 4096; + int enqueue_data = UT_DATA_MAGIC; + int dequeue_data = 0; + + EXPECT_GT(produce_cnt, 0); + EXPECT_LE(produce_cnt, bs); + + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 生产produce_cnt + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_enqueue_elem(q, &enqueue_data); + EXPECT_TRUE(ret == BBQ_OK); + } + + EXPECT_EQ(bbq_atomic64_load(&q->phead.value, q->prod_single), 0); + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + expect_eq_allocated(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], 0, 0, __LINE__); + + // 消费完 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_dequeue_elem(q, &dequeue_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(dequeue_data, UT_DATA_MAGIC); + } + + EXPECT_EQ(bbq_atomic64_load(&q->phead.value, q->prod_single), 0); + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + expect_eq_allocated(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], produce_cnt, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], produce_cnt, 0, __LINE__); + + for (uint32_t i = 1; i < bn; i++) { + expect_eq_allocated(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[i], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[i], bs, 0, __LINE__); + } + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} +// 在第一块内生产,然后被消费完 +TEST_F(ut_bbq, head_cursor_produce_something) { + ut_produce_something(1); + ut_produce_something(567); + ut_produce_something(789); + ut_produce_something(4096); +} + +void ut_produce_next_block(uint32_t over) { + int ret = 0; + struct bbq *q; + uint32_t bn = 8; + uint32_t bs = 4096; + uint32_t produce_cnt = bs + over; + int enqueue_data = UT_DATA_MAGIC; + int dequeue_data = 0; + + EXPECT_GT(over, 0); + EXPECT_LT(over, bs); + + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // 生产至第二块的第一个entry + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_enqueue_elem(q, &enqueue_data); + EXPECT_TRUE(ret == BBQ_OK); + } + + EXPECT_EQ(bbq_atomic64_load(&q->chead.value, q->cons_single), 0); + expect_phead(q, 1, 0, __LINE__); + expect_eq_allocated(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], 0, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], 0, 0, __LINE__); + + expect_eq_allocated(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_committed(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_reserved(q, &q->blocks[1], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[1], bs, 0, __LINE__); + + // 消费完 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_dequeue_elem(q, &dequeue_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(dequeue_data, UT_DATA_MAGIC); + } + + expect_phead(q, 1, 0, __LINE__); + expect_chead(q, 1, 0, __LINE__); + expect_eq_allocated(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_committed(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_reserved(q, &q->blocks[0], bs, 0, __LINE__); + expect_eq_consumed(q, &q->blocks[0], bs, 0, __LINE__); + + expect_eq_allocated(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_committed(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_reserved(q, &q->blocks[1], over, 1, __LINE__); + expect_eq_consumed(q, &q->blocks[1], over, 1, __LINE__); + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +// 第一块生产完毕,第二块生产了若干,然后被消费完 +TEST_F(ut_bbq, head_cursor_produce_next_block) { + ut_produce_next_block(1); + ut_produce_next_block(123); + ut_produce_next_block(456); + ut_produce_next_block(4095); +} + +void ut_produce_all_loop(uint32_t loop) { + int ret = 0; + struct bbq *q; + uint32_t bn = 8; + uint32_t bs = 4096; + uint32_t produce_cnt = bn * bs; + int enqueue_data = UT_DATA_MAGIC; + int dequeue_data = 0; + + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_RETRY_NEW, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + for (uint32_t cnt = 0; cnt < loop; cnt++) { + // 所有entry生产完毕 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_enqueue_elem(q, &enqueue_data); + EXPECT_TRUE(ret == BBQ_OK); + } + + // 消费完 + for (uint32_t i = 0; i < produce_cnt; i++) { + ret = bbq_dequeue_elem(q, &dequeue_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(dequeue_data, UT_DATA_MAGIC); + } + } + + expect_phead(q, bn - 1, loop - 1, __LINE__); + expect_chead(q, bn - 1, loop - 1, __LINE__); + + expect_eq_allocated(q, &q->blocks[0], bs, loop - 1, __LINE__); + expect_eq_committed(q, &q->blocks[0], bs, loop - 1, __LINE__); + expect_eq_reserved(q, &q->blocks[0], bs, loop - 1, __LINE__); + expect_eq_consumed(q, &q->blocks[0], bs, loop - 1, __LINE__); + + for (uint32_t i = 1; i < bn; i++) { + expect_eq_allocated(q, &q->blocks[i], bs, loop, __LINE__); + expect_eq_committed(q, &q->blocks[i], bs, loop, __LINE__); + expect_eq_reserved(q, &q->blocks[i], bs, loop, __LINE__); + expect_eq_consumed(q, &q->blocks[i], bs, loop, __LINE__); + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +// 完成多轮的满生产和满消费 +TEST_F(ut_bbq, head_cursor_produce_all_loop) { + ut_produce_all_loop(1); + ut_produce_all_loop(10); + ut_produce_all_loop(23); + ut_produce_all_loop(79); +} + +TEST_F(ut_bbq, head_cursor_retry_new_full_empty) { + int ret = 0; + uint32_t entries_cnt = 4096; + uint32_t loop = 1000; + struct bbq *q; + uint64_t ph = 0; + uint64_t ch = 0; + int *data = (int *)ut_malloc(UT_MODULE_UTEST, sizeof(*data) * entries_cnt); + int tmp_data = 0; + EXPECT_TRUE(data); + + q = bbq_create_elem("ut_bbq", entries_cnt, sizeof(int), BBQ_SOCKET_ID_ANY, + BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + EXPECT_TRUE(bbq_empty(q)); + + for (uint32_t i = 0; i < loop; i++) { + // 入满队 + for (uint32_t j = 0; j < entries_cnt; j++) { + data[j] = (i + 1) * j; + ret = bbq_enqueue_elem(q, &data[j]); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + EXPECT_FALSE(bbq_empty(q)); + } + + // 满队再入队 + for (uint32_t j = 0; j < entries_cnt / 3; j++) { + ret = bbq_enqueue_elem(q, &data[j]); + EXPECT_TRUE(ret == BBQ_ERR_FULL); + } + + ph = bbq_atomic64_load(&q->phead.value, q->prod_single); + ch = bbq_atomic64_load(&q->chead.value, q->cons_single); + if (i == 0) { + EXPECT_EQ((ph + 1) & q->idx_mask, ch & q->idx_mask); + } else { + EXPECT_EQ((ph)&q->idx_mask, ch & q->idx_mask); + } + + for (uint32_t i = 0; i < q->bn; i++) { + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].committed, q->prod_single) & q->off_mask, q->bs); + EXPECT_GE(bbq_atomic64_load(&q->blocks[i].allocated, q->prod_single) & q->off_mask, q->bs); + } + + // 全出队 + for (uint32_t j = 0; j < entries_cnt; j++) { + EXPECT_FALSE(bbq_empty(q)); + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_OK); + EXPECT_EQ(tmp_data, data[j]); + } + + EXPECT_TRUE(bbq_empty(q)); + // 空出队再出队 + for (uint32_t j = 0; j < entries_cnt / 2; j++) { + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_ERR_EMPTY); + } + + ph = bbq_atomic64_load(&q->phead.value, q->prod_single); + ch = bbq_atomic64_load(&q->chead.value, q->cons_single); + EXPECT_EQ(ph & q->idx_mask, ch & q->idx_mask); + for (uint32_t i = 0; i < q->bn; i++) { + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].committed, q->prod_single) & q->off_mask, q->bs); + EXPECT_GE(bbq_atomic64_load(&q->blocks[i].allocated, q->prod_single) & q->off_mask, q->bs); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, q->cons_single) & q->off_mask, q->bs); + EXPECT_GE(bbq_atomic64_load(&q->blocks[i].reserved, q->cons_single) & q->off_mask, q->bs); + } + } + + ut_free(UT_MODULE_UTEST, data); + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +TEST_F(ut_bbq, head_cursor_mpsc_faa) { + struct ut_info_s info = { + .cfg = { + .base = { + .name = {}, + .introduce = {}, + .core_begin = 0, + .core_end = 3, + }, + .ring = { + .ring_type = UT_RING_TYPE_BBQ, + .producer_cnt = 10, + .consumer_cnt = 1, + .workload = UT_WORKLOAD_SIMPLE, + .entries_cnt = 4, + .block_count = 1, + .burst_cnt = 1, + }, + .run = { + .run_ok_times = 9000000, + .run_time = 0, + }, + }, + .ctl = { + .running = true, + .all_threads_start = {}, + .producer_exit = {}, + }, + }; + + // 队列初始化 + int ret = -1; + struct ut_queue q; + ret = ut_queue_init_bbq(&info.cfg, &q); + ASSERT_TRUE(ret == 0); + + // 创建线程 + pthread_t *threads = ut_threads_create(&info, &q); + ASSERT_TRUE(threads); + + // 等待所有线程完成,回收数据 + uint32_t thread_cnt = info.cfg.ring.producer_cnt + info.cfg.ring.consumer_cnt; + struct ut_exit_data **exit_data = (struct ut_exit_data **)ut_malloc(UT_MODULE_UTEST, sizeof(struct ut_exit_data **) * (thread_cnt)); + uint32_t i = 0; + + ut_wait_all_threads_exit(&info, thread_cnt, threads, exit_data); + + // 比较数据 + struct ut_merge_s merge; + memset(&merge, 0, sizeof(merge)); + + ut_merge_all_data(exit_data, thread_cnt, &merge); + EXPECT_EQ(merge.consumer.data_error_cnt, 0); + EXPECT_EQ(merge.consumer.ok_cnt, merge.producer.ok_cnt); + + // 释放数据 + for (i = 0; i < thread_cnt; i++) { + ut_exit_data_destory(exit_data[i]); + } + ut_free(UT_MODULE_UTEST, exit_data); + ut_threads_destory(&info, threads); + EXPECT_TRUE(bbq_debug_check_array_bounds((struct bbq *)q.ring)); + ut_queue_destory(&q); +} + +TEST_F(ut_bbq, head_cursor_drop_old_full_empty) { + int ret = 0; + uint32_t bn = 2; + uint32_t bs = 4; + uint32_t loop = 1000; + struct bbq *q; + + int tmp_data = 0; + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + // EXPECT_TRUE(bbq_empty(q)); + + for (uint32_t j = 0; j < loop; j++) { + // 入满队列 + for (uint32_t i = 0; i < bn * bs; i++) { + ret = bbq_enqueue_elem(q, &i); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + // EXPECT_FALSE(bbq_empty(q)); + } + + // 全出队 + for (uint32_t i = 0; i < bn * bs; i++) { + // EXPECT_FALSE(bbq_empty(q)); + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + EXPECT_EQ(tmp_data, i); + } + + // EXPECT_TRUE(bbq_empty(q)); + // 空队再出队,失败 + for (uint32_t i = 0; i < bn * bs; i++) { + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_ERR_EMPTY) << "ret " << ret; + } + + expect_phead(q, bn - 1, j, __LINE__); + expect_chead(q, bn - 1, j, __LINE__); + for (uint32_t i = 0; i < q->bn; i++) { + expect_eq_committed(q, &q->blocks[i], q->bs, i == 0 ? j : j + 1, __LINE__); + expect_eq_allocated(q, &q->blocks[i], q->bs, i == 0 ? j : j + 1, __LINE__); + expect_eq_reserved(q, &q->blocks[i], q->bs, i == 0 ? j : j + 1, __LINE__); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, q->cons_single), 0); + } + } + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +} + +TEST_F(ut_bbq, head_cursor_drop_old_full_empty_cover) { + int ret = 0; + uint32_t bn = 2; + uint32_t bs = 4; + uint32_t loop = 1000; + uint32_t over_cnt = bs + 2; + struct bbq *q; + + EXPECT_EQ(over_cnt / bs, 1); + + int tmp_data = 0; + q = bbq_create_elem_with_bnbs("ut_bbq", bn, bs, sizeof(int), + BBQ_SOCKET_ID_ANY, BBQ_F_DROP_OLD, + ut_malloc_def_callback, ut_free_def_callback); + ASSERT_NE(q, nullptr); + + // EXPECT_TRUE(bbq_empty(q)); + // 入满队列,再入over_cnt + for (uint32_t i = 0; i < bn * bs * loop + over_cnt; i++) { + ret = bbq_enqueue_elem(q, &i); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + + // uint32_t tmpA = i / (bn * bs); + // uint32_t tmpB = i % (bn * bs); + // if (tmpA > 0 && (tmpB < bs)) { + // // 覆盖第一个块时,整个块被作废,因此都是empty,从第二个块开始可读取 + // EXPECT_TRUE(bbq_empty(q)) << "i " << i << "tmpA " << tmpA << "tmpB " << tmpB; + // } else { + // EXPECT_FALSE(bbq_empty(q)); + // } + } + + expect_phead(q, 1, loop, __LINE__); + expect_chead(q, 0, 0, __LINE__); + // 检查每一个block上游标的正确性 + for (uint32_t i = 0; i < bn; i++) { + expect_eq_committed(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_allocated(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_reserved(q, &q->blocks[i], + i == 0 ? 0 : bs, 0, + __LINE__); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, false), 0); + } + + // 队列中的数据全出队 + for (uint32_t i = 0; i < over_cnt - bs; i++) { + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_OK) << "ret " << ret; + } + + for (uint32_t i = 0; i < bn * bs; i++) { + // EXPECT_TRUE(bbq_empty(q)); + ret = bbq_dequeue_elem(q, &tmp_data); + EXPECT_TRUE(ret == BBQ_ERR_EMPTY) << "ret " << ret; + } + + expect_chead(q, 1, 0, __LINE__); + for (uint32_t i = 0; i < bn; i++) { + expect_eq_committed(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_allocated(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 0 ? loop : loop + 1, + __LINE__); + expect_eq_reserved(q, &q->blocks[i], + i == bn - 1 ? over_cnt - bs : bs, + i == 1 ? loop + 1 : 0, __LINE__); + EXPECT_EQ(bbq_atomic64_load(&q->blocks[i].consumed, false), 0); + } + + EXPECT_TRUE(bbq_debug_check_array_bounds(q)); + bbq_destory(q); +}
\ No newline at end of file diff --git a/bbq/unittest/ut_bbq_func.c b/bbq/unittest/ut_bbq_func.c new file mode 100644 index 0000000..88910ca --- /dev/null +++ b/bbq/unittest/ut_bbq_func.c @@ -0,0 +1,615 @@ +/* + * @Author: liuyu + * @LastEditTime: 2024-07-07 22:34:03 + * @Email: [email protected] + * @Describe: TODO + */ + +#include "ut_bbq_func.h" +#include "bbq.h" +#include <pthread.h> +#include <string.h> +#include <sys/prctl.h> +#include <sys/time.h> +#include <unistd.h> + +struct ut_memory { + aotmic_uint64 malloc_cnt; + aotmic_uint64 free_cnt; +}; + +struct ut_memory ut_memory_g[UT_MODULE_MAX] = {0}; + +char *ut_ring_type_map[UT_RING_TYPE_MAX] = { + [UT_RING_TYPE_BBQ] = UT_RING_TYPE_BBQ_STR, + [UT_RING_TYPE_DPDK] = UT_RING_TYPE_DPDK_STR, + [UT_RING_TYPE_RMIND] = UT_RING_TYPE_RMIND_STR, +}; + +void *ut_malloc(enum ut_module module, size_t size) { + void *ptr = malloc(size); + if (ptr != NULL) { + atomic_fetch_add(&ut_memory_g[module].malloc_cnt, 1); + } + + return ptr; +} + +void ut_free(enum ut_module module, void *ptr) { + if (ptr != NULL) { + atomic_fetch_add(&ut_memory_g[module].free_cnt, 1); + } + free(ptr); +} + +bool ut_malloc_free_equal() { + bool ret = true; + for (int i = 0; i < UT_MODULE_MAX; i++) { + uint64_t malloc_cnt = atomic_load(&ut_memory_g[i].malloc_cnt); + uint64_t free_cnt = atomic_load(&ut_memory_g[i].free_cnt); + if (malloc_cnt != free_cnt) { + UT_ERR_LOG("[module:%d] malloc:%lu free:%lu, test malloc-free not equal\n", i, malloc_cnt, free_cnt); + ret = false; + } + } + + return ret; +} + +void ut_memory_counter_clear() { + memset(ut_memory_g, 0, sizeof(ut_memory_g)); +} + +void ut_memory_counter_print() { + for (int i = 0; i < UT_MODULE_MAX; i++) { + uint64_t malloc_cnt = atomic_load(&ut_memory_g[i].malloc_cnt); + uint64_t free_cnt = atomic_load(&ut_memory_g[i].free_cnt); + if (malloc_cnt == 0 && free_cnt == 0) { + continue; + } + + UT_INFO_LOG("[%d]test malloc:%lu free:%lu", i, + atomic_load(&ut_memory_g[i].malloc_cnt), + atomic_load(&ut_memory_g[i].free_cnt)); + } + + if (ut_malloc_free_equal()) { + UT_INFO_LOG("all memory free"); + } else { + UT_ERR_LOG("memory not all free"); + } +} + +struct ut_metric ut_clock_time_get() { + struct ut_metric metric = {0}; + clock_gettime(CLOCK_REALTIME, &metric.timestamp); // 系统实时时间,随系统实时时间改变而改变 + return metric; +} + +uint64_t ut_clock_time_to_ns(struct ut_metric *metric) { + return metric->timestamp.tv_nsec + metric->timestamp.tv_sec * 1000 * 1000 * 1000; +} + +double ut_clock_time_to_double(struct ut_metric *metric) { + return metric->timestamp.tv_sec + + metric->timestamp.tv_nsec * 1.0 / 1000 / 1000 / 1000; +} + +bool ut_clock_time_is_zero(struct ut_metric *metric) { + return metric->timestamp.tv_sec == 0 && metric->timestamp.tv_nsec == 0; +} + +bool ut_timespec_is_after(const struct timespec *a, const struct timespec *b) { + if (a->tv_sec > b->tv_sec) { + // a的秒数大于b的秒数,所以a在b之后 + return true; + } else if (a->tv_sec == b->tv_sec && a->tv_nsec > b->tv_nsec) { + // a和b的秒数相同,但a的纳秒数大于b的纳秒数,所以a在b之后 + return true; + } + // 否则,a不在b之后 + return false; +} + +struct ut_metric ut_clock_time_sub(struct ut_metric now, struct ut_metric last) { + struct ut_metric diff = { + .timestamp.tv_sec = now.timestamp.tv_sec - last.timestamp.tv_sec, + .timestamp.tv_nsec = now.timestamp.tv_nsec - last.timestamp.tv_nsec, + }; + + if (now.timestamp.tv_nsec > last.timestamp.tv_nsec) { + diff.timestamp.tv_nsec = now.timestamp.tv_nsec - last.timestamp.tv_nsec; + } else { + // 从秒借位 + diff.timestamp.tv_sec--; + diff.timestamp.tv_nsec = 1000 * 1000 * 1000 + now.timestamp.tv_nsec - last.timestamp.tv_nsec; + } + + return diff; +} + +enum ut_workload ut_workload_str2enum(const char *workload) { + if (strcmp(workload, "simple") == 0) { + return UT_WORKLOAD_SIMPLE; + } else if (strcmp(workload, "complex") == 0) { + return UT_WORKLOAD_COMPLEX; + } + + return UT_WORKLOAD_MAX; +} + +enum ut_ring_type ut_ring_type_str2enum(const char *ring_type) { + if (strcmp(ring_type, UT_RING_TYPE_BBQ_STR) == 0) { + return UT_RING_TYPE_BBQ; + } else if (strcmp(ring_type, UT_RING_TYPE_DPDK_STR) == 0) { + return UT_RING_TYPE_DPDK; + } else if (strcmp(ring_type, UT_RING_TYPE_RMIND_STR) == 0) { + return UT_RING_TYPE_RMIND; + } + + return UT_RING_TYPE_MAX; +} + +char *ut_ring_type_enum2str(enum ut_ring_type ring_type) { + if (ring_type >= UT_RING_TYPE_MAX) { + return "unknown"; + } else { + return ut_ring_type_map[ring_type]; + } +} + +int ut_setaffinity(int core_id) { + cpu_set_t mask; + CPU_ZERO(&mask); + CPU_SET(core_id, &mask); + + if (pthread_setaffinity_np(pthread_self(), sizeof(mask), &mask) == -1) { + UT_ERR_LOG("pthread_setaffinity_np erro\n"); + return BBQ_ERR; + } + + return BBQ_OK; +} + +void *ut_malloc_def_callback(int32_t socket_id __attribute__((unused)), size_t size) { + return malloc(size); + // return aligned_alloc(BBQ_CACHE_LINE, size); +} + +void ut_free_def_callback(void *ptr, + size_t size __attribute__((unused))) { + free(ptr); +} + +uint32_t ut_bbq_enqueue_burst(void *ring, void **obj_table, uint32_t n, uint16_t thread_idx, uint32_t *wait_consumed) { + UT_AVOID_WARNING(thread_idx); + return bbq_enqueue_burst(ring, obj_table, n, wait_consumed); +} + +int ut_queue_init_bbq(struct ut_cfg *cfg, struct ut_queue *q) { +#if 0 + // 开启了BBQ_F_ENABLE_STAT 会导致性能下降 + unsigned int flags = BBQ_F_RETRY_NEW | BBQ_F_ENABLE_STAT; +#else + unsigned int flags = BBQ_F_RETRY_NEW; +#endif + + if (cfg->ring.producer_cnt <= 1) { + flags |= BBQ_F_SP_ENQ; + } + + if (cfg->ring.consumer_cnt <= 1) { + flags |= BBQ_F_SC_DEQ; + } + + if (cfg->ring.block_count == 0) { + q->ring = bbq_create("ut_bbq", cfg->ring.entries_cnt, BBQ_SOCKET_ID_ANY, flags, + ut_malloc_def_callback, ut_free_def_callback); + } else { + q->ring = bbq_create_with_bnbs("ut_bbq", cfg->ring.block_count, + cfg->ring.entries_cnt / cfg->ring.block_count, + BBQ_SOCKET_ID_ANY, flags, ut_malloc_def_callback, ut_free_def_callback); + } + + if (q->ring == NULL) { + UT_ERR_LOG("bbq create queue failed"); + return BBQ_ERR_INPUT_NULL; + } + + q->ring_free_f = (ut_ring_free_f)bbq_destory; + q->enqueue_f = (ut_ring_enqueue_f)bbq_enqueue; + q->dequeue_f = (ut_ring_dequeue_f)bbq_dequeue; + q->enqueue_burst_f = (ut_enqueue_burst_f)ut_bbq_enqueue_burst; + q->dequeue_burst_f = (ut_dequeue_burst_f)bbq_dequeue_burst; + return 0; +} + +void ut_queue_destory(struct ut_queue *q) { + if (q != NULL && q->ring_free_f != NULL) { + q->ring_free_f(q->ring); + } +} + +bool ut_all_producer_exit(struct ut_info_s *ut_info) { + return atomic_load(&ut_info->ctl.producer_exit) == ut_info->cfg.ring.producer_cnt; +} + +void ut_wait_all_threads_ready(struct ut_ctl *ctl) { + pthread_barrier_wait(&ctl->all_threads_start); + UT_DBG_LOG("thread init done!"); +} + +struct ut_exit_data *ut_exit_data_create(struct ut_thread_arg *t_arg) { + struct ut_exit_data *exit_data = (struct ut_exit_data *)ut_malloc(UT_MODULE_COMMON, sizeof(struct ut_exit_data)); + if (exit_data == NULL) { + UT_ERR_LOG("malloc failed"); + exit(-1); + } + + size_t size = t_arg->info->cfg.ring.entries_cnt; + exit_data->simple_data_cnt = size; + exit_data->simple_data = ut_data_create(size, UT_DATA_MAGIC_TYPE); + + if (exit_data->simple_data == NULL) { + UT_ERR_LOG("malloc failed"); + exit(-1); + } + exit_data->arg = t_arg; + exit_data->thread_id = pthread_self(); + exit_data->latency_ns = 0; + exit_data->data_error_cnt = 0; + + return exit_data; +} + +void ut_exit_data_destory(struct ut_exit_data *data) { + ut_data_destory(data->simple_data, data->simple_data_cnt); + ut_free(UT_MODULE_COMMON, data->arg); + ut_free(UT_MODULE_COMMON, data); +} + +struct ut_data **ut_data_create(size_t cnt, enum ut_data_type data_type) { + struct ut_data **simple_data = ut_malloc(UT_MODULE_DATA, sizeof(*simple_data) * cnt); + struct ut_metric enqueue_time = ut_clock_time_get(); + for (size_t i = 0; i < cnt; i++) { + simple_data[i] = ut_malloc(UT_MODULE_DATA, sizeof(*simple_data[i])); + if (data_type == UT_DATA_MAGIC_TYPE) { + simple_data[i]->data = UT_DATA_MAGIC; + } else { + simple_data[i]->data = (uintptr_t)(simple_data[i]); + } + simple_data[i]->enqueue_time = enqueue_time; + } + + return simple_data; +} + +void ut_data_destory(struct ut_data **data, size_t cnt) { + for (size_t i = 0; i < cnt; i++) { + ut_free(UT_MODULE_DATA, data[i]); + } + ut_free(UT_MODULE_DATA, data); +} + +uint32_t ut_exec_enqueue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, + struct ut_metric *op_use_diff, uint16_t thread_idx) { + uint32_t enqueue_cnt = 0; + struct ut_metric op_use_start = ut_clock_time_get(); + uint32_t wait_consumed = 0; + enqueue_cnt = q->enqueue_burst_f(q->ring, (void **)data, burst_cnt, thread_idx, &wait_consumed); + *op_use_diff = ut_clock_time_sub(ut_clock_time_get(), op_use_start); + + return enqueue_cnt; +} + +uint32_t ut_exec_dequeue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, struct ut_metric *op_use_diff) { + uint32_t dequeue_cnt = 0; + + struct ut_metric op_use_start = ut_clock_time_get(); + dequeue_cnt = q->dequeue_burst_f(q->ring, (void **)data, burst_cnt, NULL); + *op_use_diff = ut_clock_time_sub(ut_clock_time_get(), op_use_start); + + return dequeue_cnt; +} + +void *ut_thread_producer_start(void *arg) { + uint32_t enqueue_cnt = 0; + uint64_t ok_cnt = 0; + uint64_t run_times = 0; + struct ut_thread_arg *t_arg = (struct ut_thread_arg *)arg; + struct ut_info_s *info = t_arg->info; + struct ut_cfg *cfg = &info->cfg; + struct ut_queue *q = t_arg->q; + struct ut_exit_data *exit_data = ut_exit_data_create(t_arg); + + char thread_name[128] = {0}; + uint64_t op_ok_latency_ns = 0; + uint64_t op_err_latency_ns = 0; + uint64_t run_ok_times = cfg->run.run_ok_times / cfg->ring.producer_cnt; + struct ut_metric op_latency = {0}; + snprintf(thread_name, sizeof(thread_name), "producer:%lu", exit_data->thread_id); + prctl(PR_SET_NAME, thread_name); + if (ut_setaffinity(t_arg->core) != BBQ_OK) { + UT_ERR_LOG("ut_setaffinity error"); + exit(-1); + } + + ut_wait_all_threads_ready(&info->ctl); + UT_INFO_LOG("producer thread:%lx, core:%d", exit_data->thread_id, t_arg->core); + + exit_data->metric_start = ut_clock_time_get(); + while (true) { + if ((run_ok_times > 0 && ok_cnt >= run_ok_times) || (!info->ctl.running)) { + // 控制次数的循环或运行时间到了 + break; + } + + if (cfg->ring.workload == UT_WORKLOAD_SIMPLE) { + enqueue_cnt = ut_exec_enqueue(q, exit_data->simple_data, cfg->ring.burst_cnt, &op_latency, t_arg->thread_idx); + } else { + struct ut_data **data = ut_data_create(cfg->ring.burst_cnt, UT_DATA_UINTPTR_TYPE); + if (data == NULL) { + UT_ERR_LOG("malloc falied"); + exit(-1); + } + + enqueue_cnt = ut_exec_enqueue(q, data, cfg->ring.burst_cnt, &op_latency, t_arg->thread_idx); + // 释放未入队的内存 + for (uint32_t i = enqueue_cnt; i < cfg->ring.burst_cnt; i++) { + ut_free(UT_MODULE_DATA, data[i]); + } + + ut_free(UT_MODULE_DATA, data); + } + + if (enqueue_cnt > 0) { + ok_cnt += enqueue_cnt; + op_ok_latency_ns += ut_clock_time_to_ns(&op_latency); + } else { + op_err_latency_ns += ut_clock_time_to_ns(&op_latency); + } + + run_times++; + } + + exit_data->metric_end = ut_clock_time_get(); + exit_data->run_times = run_times; + exit_data->ok_cnt = ok_cnt; + + exit_data->op_ok_latency_ns = op_ok_latency_ns; + exit_data->op_err_latency_ns = op_err_latency_ns; + atomic_fetch_add(&info->ctl.producer_exit, 1); + + UT_DBG_LOG("producer-----> en_ok:%lu", ok_cnt); + pthread_exit(exit_data); +} + +void *ut_thread_consumer_start(void *arg) { + uint32_t deq_cnt = -1; + uint64_t ok_cnt = 0; + uint64_t run_times = 0; + struct ut_thread_arg *t_arg = (struct ut_thread_arg *)arg; + struct ut_info_s *info = t_arg->info; + struct ut_cfg *cfg = &info->cfg; + struct ut_queue *q = t_arg->q; + struct ut_exit_data *exit_data = ut_exit_data_create(t_arg); + uint64_t latency_ns = 0; + struct ut_metric op_latency = {0}; + uint64_t op_ok_latency_ns = 0; + uint64_t op_err_latency_ns = 0; + uint64_t data_error_cnt = 0; + char thread_name[128] = {0}; + struct ut_data **deq_data = ut_malloc(UT_MODULE_DATA, sizeof(*deq_data) * cfg->ring.entries_cnt); + + snprintf(thread_name, sizeof(thread_name), "consumer:%lu", exit_data->thread_id); + prctl(PR_SET_NAME, thread_name); + if (ut_setaffinity(t_arg->core) != BBQ_OK) { + UT_ERR_LOG("ut_setaffinity error"); + exit(-1); + } + + ut_wait_all_threads_ready(&info->ctl); + UT_INFO_LOG("consumer thread:%lx, core:%d", exit_data->thread_id, t_arg->core); + + exit_data->metric_start = ut_clock_time_get(); + + while (true) { + if (ut_all_producer_exit(info) && deq_cnt == 0) { + // 运行时间到了或是所有生产者退出了,检查生产者是否全部退出,且队列被消费完了 + break; + } + + deq_cnt = ut_exec_dequeue(q, deq_data, cfg->ring.burst_cnt, &op_latency); + if (deq_cnt > 0) { + for (uint32_t i = 0; i < deq_cnt; i++) { + struct ut_data *data = deq_data[i]; + if (cfg->ring.workload == UT_WORKLOAD_SIMPLE) { + if (data->data != UT_DATA_MAGIC) { + UT_ERR_LOG("the obtained data is not consistent with the expectation, expect:%u actual:%lu", UT_DATA_MAGIC, data->data); + exit_data->data_error_cnt += 1; + } + } else { + struct ut_metric latency = ut_clock_time_sub(ut_clock_time_get(), data->enqueue_time); + if (ut_clock_time_is_zero(&data->enqueue_time)) { + UT_ERR_LOG("enqueue_time is 0"); + exit(-1); + } + + if (data->data != (uintptr_t)data) { + UT_ERR_LOG("the obtained data is not consistent with the expectation, expect:%lu actual:%lu", (uintptr_t)data, data->data); + data_error_cnt += 1; + } + + latency_ns += ut_clock_time_to_ns(&latency); + ut_free(UT_MODULE_DATA, data); + } + } + ok_cnt += deq_cnt; + op_ok_latency_ns += ut_clock_time_to_ns(&op_latency); + } else { + op_err_latency_ns += ut_clock_time_to_ns(&op_latency); + } + + run_times++; + } + + exit_data->metric_end = ut_clock_time_get(); + exit_data->run_times = run_times; + exit_data->ok_cnt = ok_cnt; + exit_data->latency_ns = latency_ns; + exit_data->op_ok_latency_ns = op_ok_latency_ns; + exit_data->op_err_latency_ns = op_err_latency_ns; + exit_data->data_error_cnt = data_error_cnt; + + ut_free(UT_MODULE_DATA, deq_data); + UT_DBG_LOG("consumer-----> de_ok:%lu", ok_cnt); + pthread_exit(exit_data); +} + +void ut_wait_all_threads_exit(struct ut_info_s *info, uint32_t thread_cnt, pthread_t *threads, struct ut_exit_data **exit_data) { + if (info->cfg.run.run_time > 0) { + UT_DBG_LOG("sleep %lus, and notify all threads to exit...", info->cfg.run.run_time); + sleep(info->cfg.run.run_time); + info->ctl.running = false; + } + + for (uint32_t i = 0; i < thread_cnt; i++) { + pthread_join(threads[i], (void **)(&exit_data[i])); // 等待每个线程结束 + } +} +void ut_one_thread_create(struct ut_info_s *info, struct ut_queue *q, enum ut_thread_type ttype, int core, uint16_t thread_id, pthread_t *thread) { + UT_DBG_LOG("thread type:%d core:%d", ttype, core); + struct ut_thread_arg *arg = (struct ut_thread_arg *)ut_malloc(UT_MODULE_COMMON, sizeof(struct ut_thread_arg)); // 线程回收时free + arg->info = info; + arg->q = q; + arg->ttype = ttype; + arg->core = core; + arg->thread_idx = thread_id; + + if (ttype == UT_THREAD_PRODUCER) { + pthread_create(thread, NULL, ut_thread_producer_start, arg); + } else { + pthread_create(thread, NULL, ut_thread_consumer_start, arg); + } +} + +#define CORE_ID_CHK_SET(core_id, max_id) \ + do { \ + core_id = (core_id + 1) <= max_id ? (core_id + 1) : core_id; \ + } while (0) + +pthread_t *ut_threads_create(struct ut_info_s *info, struct ut_queue *q) { + // 创建生产者消费者线程 + uint16_t thread_id = 0; + struct ut_cfg *cfg = &info->cfg; + int core_id = cfg->base.core_begin; + size_t thread_cnt = cfg->ring.producer_cnt + cfg->ring.consumer_cnt; + pthread_t *threads = (pthread_t *)ut_malloc(UT_MODULE_COMMON, sizeof(pthread_t) * thread_cnt); // 存储所有线程ID的数组 + + pthread_barrier_init(&info->ctl.all_threads_start, NULL, thread_cnt); + info->ctl.running = true; + info->ctl.producer_exit = ATOMIC_VAR_INIT(0); + + // MPSC 或 SPMC 场景在第一个核心/超线程上分配单个生产者或消费者,然后将其他线程按顺序分配给核心/超线程。 + // MPMC,我们将生产者和消费者一一交错分配 + // 如果数量不同,则在最后分配剩余部分。 + if (cfg->ring.producer_cnt == 1 && cfg->ring.consumer_cnt >= 1) { + // SPMC,第一个核心给生产者,其他分配给消费者 + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + for (uint32_t i = 0; i < cfg->ring.consumer_cnt; i++) { + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + } + } else if (cfg->ring.consumer_cnt == 1 && cfg->ring.producer_cnt >= 1) { + // MPSC,第一个核心给消费者,其他分配给生产者 + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + for (uint32_t i = 0; i < cfg->ring.producer_cnt; i++) { + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + } + } else { + // MPMC 或 只有生产者 或这有消费者,核心交错分配 + uint32_t pcnt = cfg->ring.producer_cnt; // 生产者个数 + uint32_t ccnt = cfg->ring.consumer_cnt; // 消费者个数 + for (core_id = cfg->base.core_begin; core_id < cfg->base.core_end && pcnt > 0 && ccnt > 0;) { + if ((core_id & 1) == 0) { + // 偶数 + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + pcnt--; + } else { + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + ccnt--; + } + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + } + + for (uint32_t i = 0; i < pcnt; i++) { + ut_one_thread_create(info, q, UT_THREAD_PRODUCER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + } + + for (uint32_t i = 0; i < ccnt; i++) { + ut_one_thread_create(info, q, UT_THREAD_CONSUMER, core_id, thread_id, &(threads[thread_id])); + thread_id++; + CORE_ID_CHK_SET(core_id, cfg->base.core_end); + } + } + + return threads; +} + +void ut_threads_destory(struct ut_info_s *info, pthread_t *threads) { + pthread_barrier_destroy(&info->ctl.all_threads_start); + ut_free(UT_MODULE_COMMON, threads); +} + +void ut_merge_data_detail(struct ut_merge_data *merge, struct ut_exit_data *exit_data) { + merge->run_times += exit_data->run_times; + merge->ok_cnt += exit_data->ok_cnt; + merge->latency_ns += exit_data->latency_ns; + merge->op_err_latency_ns = exit_data->op_err_latency_ns; + merge->op_ok_latency_ns += exit_data->op_ok_latency_ns; + merge->data_error_cnt += exit_data->data_error_cnt; +} + +void ut_merge_all_data(struct ut_exit_data **exit_data, uint32_t thread_cnt, struct ut_merge_s *merge) { + struct ut_metric p_start = {0}; + struct ut_metric p_end = {0}; + struct ut_metric c_start = {0}; + struct ut_metric c_end = {0}; + + for (uint32_t i = 0; i < thread_cnt; i++) { + // 根据生产者/消费者 线程最早开始和最晚结束,记录时间 + if (exit_data[i]->arg->ttype == UT_THREAD_PRODUCER) { + if (ut_clock_time_is_zero(&p_start) || ut_timespec_is_after(&p_start.timestamp, &exit_data[i]->metric_start.timestamp)) { + p_start = exit_data[i]->metric_start; + } + + if (ut_timespec_is_after(&exit_data[i]->metric_start.timestamp, &p_end.timestamp)) { + p_end = exit_data[i]->metric_end; + } + + ut_merge_data_detail(&merge->producer, exit_data[i]); + } else { + if (ut_clock_time_is_zero(&c_start) || ut_timespec_is_after(&c_start.timestamp, &exit_data[i]->metric_start.timestamp)) { + c_start = exit_data[i]->metric_start; + } + + if (ut_timespec_is_after(&exit_data[i]->metric_start.timestamp, &c_end.timestamp)) { + c_end = exit_data[i]->metric_end; + } + + ut_merge_data_detail(&merge->consumer, exit_data[i]); + } + } + + merge->producer.use_time = ut_clock_time_sub(p_end, p_start); + merge->consumer.use_time = ut_clock_time_sub(c_end, c_start); +}
\ No newline at end of file diff --git a/bbq/unittest/ut_bbq_func.h b/bbq/unittest/ut_bbq_func.h new file mode 100644 index 0000000..322f2cf --- /dev/null +++ b/bbq/unittest/ut_bbq_func.h @@ -0,0 +1,302 @@ +/* + * @Author: liuyu + * @LastEditTime: 2024-07-07 21:57:13 + * @Email: [email protected] + * @Describe: TODO + */ +#pragma once + +#include "bbq.h" +#include <pthread.h> + +#include <pthread.h> +#include <stdbool.h> +#include <stdint.h> +#include <stdio.h> +#include <time.h> + +#ifndef __cplusplus +// C +#include <stdatomic.h> +#endif + +enum ut_thread_type { + UT_THREAD_PRODUCER, + UT_THREAD_CONSUMER, + UT_THREAD_TYPE_MAX, +}; + +struct ut_metric { + struct timespec timestamp; // 系统时间戳 + // uint64_t cycles; // cpu运行的cycle +}; + +struct ut_report { + uint64_t throughput; // 吞吐量:每秒消耗的条目总数。 + double data_latency; // 数据延迟:每个数据在队列中停留的平均时间。 + double op_latency; // 操作延迟:每个入队或出队操作的平均延迟。 + double *fairness; // 公平性:每个生产者/消费者的吞吐量(占总吞吐的百分比) + double full_empty; // 队列满时入队的延迟/队列空时出队的延迟(仅用于简单工作负载)。 + uint64_t oversubscription; // 比核心/超线程更多的生产者和消费者的吞吐量 +}; + +enum ut_workload { + UT_WORKLOAD_SIMPLE, // 简单负载,每个生产者或消费者都有自己的线程,它们在循环中不断执行入队或出队操作。每次出队后都会验证数据。 + UT_WORKLOAD_COMPLEX, // 复杂负载,基于简单工作负载。生产者和消费者为数据分配空间,执行入队和出队,然后手动释放 + UT_WORKLOAD_MAX, +}; + +#define UT_RING_TYPE_BBQ_STR "bbq" +#define UT_RING_TYPE_DPDK_STR "dpdk" +#define UT_RING_TYPE_RMIND_STR "rmind" +enum ut_ring_type { + UT_RING_TYPE_BBQ, + UT_RING_TYPE_DPDK, + UT_RING_TYPE_RMIND, + UT_RING_TYPE_MAX, +}; + +struct ut_cfg_base { + char name[128]; // 配置文件名 + char introduce[128]; // 测试配置说明 + uint16_t core_begin; // 起始核心 + uint16_t core_end; // 终止核心 +}; + +struct ut_cfg_ring { + enum ut_ring_type ring_type; // ring buffer类型 + uint32_t producer_cnt; // 生产者个数 + uint32_t consumer_cnt; // 消费者个数 + enum ut_workload workload; // 负载模式 + uint64_t entries_cnt; // ring初始化时分配entry的个数 + uint32_t block_count; // bbq block个数,为0时表示根据entries_cnt自动计算 + uint32_t burst_cnt; // 批量出入队个数 +}; + +struct ut_cfg_run { + uint64_t run_ok_times; // 成功入队/入队次数 + uint64_t run_time; // 整体运行时间,单位秒 +}; + +struct ut_cfg { + struct ut_cfg_base base; + struct ut_cfg_ring ring; + struct ut_cfg_run run; +}; + +struct ut_ctl { + volatile bool running; // 默认为true,当设置为false,即所有生产者消费者即将退出 + pthread_barrier_t all_threads_start; +#ifndef __cplusplus + // C + atomic_uint producer_exit; +#else + // C++ 为了兼容gtest测试 + std::atomic<uint32_t> producer_exit; +#endif +}; + +struct ut_info_s { + struct ut_cfg cfg; + struct ut_ctl ctl; +}; + +enum ut_module { + UT_MODULE_UTEST, + UT_MODULE_COMMON, + UT_MODULE_DATA, + UT_MODULE_BCM, + UT_MODULE_TABLE, + UT_MODULE_RMIND, + UT_MODULE_MAX, +}; + +#ifdef UT_DEBUG +#define UT_DBG_LOG(fmt, ...) \ + do { \ + printf("[DBG][%s:%d:%s]" fmt "\n", __func__, __LINE__, __FILE__, ##__VA_ARGS__); \ + } while (0) + +#else +#define UT_DBG_LOG(fmt, ...) \ + do { \ + } while (0) +#endif + +#define UT_ERR_LOG(fmt, ...) \ + do { \ + printf("\x1b[31m [ERR][%s:%d:%s]" fmt "\x1b[0m\n", __func__, __LINE__, __FILE__, ##__VA_ARGS__); \ + } while (0) + +#define UT_INFO_LOG(fmt, ...) \ + do { \ + printf("[INFO][%s:%d:%s]" fmt "\n", __func__, __LINE__, __FILE__, ##__VA_ARGS__); \ + } while (0) + +#define UT_AVOID_WARNING(param) ((void)param) + +#define UT_PTR_ARRAY_DATA_INIT(table, t_type, t_count) \ + do { \ + if (table != NULL) { \ + memset(table, 0, sizeof(t_type *) * t_count); \ + for (uint32_t i = 0; i < t_count; i++) { \ + table[i] = (t_type *)ut_malloc(UT_MODULE_TABLE, sizeof(t_type)); \ + if (table[i] == NULL) { \ + for (uint32_t j = 0; j < i; j++) { \ + ut_free(UT_MODULE_TABLE, table[j]); \ + table[j] = NULL; \ + } \ + ut_free(UT_MODULE_TABLE, table); \ + break; \ + } \ + *table[i] = (t_type)UT_DATA_MAGIC; \ + } \ + } \ + } while (0) + +#define UT_PTR_ARRAY_DATA_DESTORY(table, t_count) \ + do { \ + if (table != NULL) { \ + for (uint32_t i = 0; i < t_count; i++) { \ + ut_free(UT_MODULE_TABLE, table[i]); \ + table[i] = NULL; \ + } \ + } \ + } while (0) + +#define UT_DOUBLE_PTR_DATA_INIT(table, t_type, t_count) \ + do { \ + table = (t_type **)ut_malloc(UT_MODULE_TABLE, sizeof(t_type *) * t_count); \ + if (table != NULL) { \ + UT_PTR_ARRAY_DATA_INIT(table, t_type, t_count); \ + } \ + } while (0) + +#define UT_DOUBLE_PTR_DATA_DESTORY(table, t_count) \ + do { \ + if (table != NULL) { \ + UT_PTR_ARRAY_DATA_DESTORY(table, t_count); \ + ut_free(UT_MODULE_TABLE, table); \ + table = NULL; \ + } \ + } while (0) + +#define UT_ARRAY_DATA_INIT(table, t_count) \ + do { \ + for (int i = 0; i < t_count; i++) { \ + table[i] = UT_DATA_MAGIC; \ + } \ + } while (0) + +#define UT_DATA_MAGIC 0x1F // 为了兼容所有类型的数据,存储1字节大小的数据 + +typedef void (*ut_ring_free_f)(void *ring); +typedef int (*ut_ring_enqueue_f)(void *ring, void *obj); +typedef int (*ut_ring_dequeue_f)(void *ring, void *obj); +typedef uint32_t (*ut_enqueue_burst_f)(void *ring, void **obj_table, uint32_t n, uint16_t thread_idx, uint32_t *wait_consumed); +typedef uint32_t (*ut_dequeue_burst_f)(void *ring, void **obj_table, uint32_t n, uint32_t *wait_consumed); +typedef bool (*ut_ring_empty_f)(void *ring); + +struct ut_queue { + void *ring; + enum ut_ring_type ring_type; + ut_ring_free_f ring_free_f; + ut_ring_enqueue_f enqueue_f; + ut_ring_dequeue_f dequeue_f; + ut_enqueue_burst_f enqueue_burst_f; + ut_dequeue_burst_f dequeue_burst_f; +}; + +struct ut_thread_arg { + int core; + uint16_t thread_idx; // 线程索引,不是pthread_id + enum ut_thread_type ttype; + struct ut_info_s *info; + struct ut_queue *q; +}; + +struct ut_data { + uint64_t data; // 数据 + struct ut_metric enqueue_time; // 入队时间 +}; + +struct ut_exit_data { + pthread_t thread_id; + uint64_t run_times; + uint64_t ok_cnt; + uint64_t latency_ns; // 仅消费者有效,数据停留的时延 + uint64_t op_ok_latency_ns; // 成功操作的时延 + uint64_t op_err_latency_ns; // 操作失败的时延, 如满队入队,空队出队 + uint64_t data_error_cnt; // 发生过至少一次数据不一致的次数 + size_t simple_data_cnt; + struct ut_thread_arg *arg; + struct ut_metric metric_start; + struct ut_metric metric_end; + struct ut_data **simple_data; +}; + +struct ut_merge_data { + uint64_t run_times; + uint64_t ok_cnt; + uint64_t latency_ns; // 仅消费者有效,数据停留的时延 + uint64_t op_ok_latency_ns; // 成功操作的时延 + uint64_t op_err_latency_ns; // 操作失败的时延, 如满队入队,空队出队 + uint64_t data_error_cnt; // 发生过至少一次数据不一致的次数 + struct ut_metric use_time; +}; + +struct ut_merge_s { + struct ut_merge_data producer; + struct ut_merge_data consumer; +}; + +enum ut_data_type { + UT_DATA_MAGIC_TYPE, + UT_DATA_UINTPTR_TYPE, +}; +extern struct ut_metric ut_clock_time_get(); +extern struct ut_metric ut_clock_time_sub(struct ut_metric now, struct ut_metric last); +extern int ut_load_config(const char *config, const char *ring_type, uint32_t burst_cnt, struct ut_cfg *cfg); +extern enum ut_workload ut_workload_str2enum(const char *workload); +extern enum ut_ring_type ut_ring_type_str2enum(const char *ring_type); +extern bool ut_clock_time_is_zero(struct ut_metric *metric); +extern bool ut_timespec_is_after(const struct timespec *a, const struct timespec *b); +extern char *ut_ring_type_enum2str(enum ut_ring_type ring_type); +extern uint64_t ut_clock_time_to_ns(struct ut_metric *metric); +extern double ut_clock_time_to_double(struct ut_metric *metric); +extern void *ut_malloc(enum ut_module module, size_t size); +extern void ut_free(enum ut_module module, void *ptr); +extern void ut_memory_counter_print(); +extern void ut_memory_counter_clear(); +extern bool ut_malloc_free_equal(); +extern int ut_setaffinity(int core_id); +extern void *ut_malloc_def_callback(int32_t socket_id __attribute__((unused)), size_t size); +extern void ut_free_def_callback(void *ptr, size_t size __attribute__((unused))); +extern void ut_threads_destory(struct ut_info_s *info, pthread_t *threads); +extern pthread_t *ut_threads_create(struct ut_info_s *info, struct ut_queue *q); +extern void ut_one_thread_create(struct ut_info_s *info, struct ut_queue *q, enum ut_thread_type ttype, int core, uint16_t thread_id, pthread_t *thread); +extern void ut_wait_all_threads_exit(struct ut_info_s *info, uint32_t thread_cnt, pthread_t *threads, struct ut_exit_data **exit_data); +extern void *ut_thread_consumer_start(void *arg); +extern void *ut_thread_producer_start(void *arg); +extern uint32_t ut_exec_dequeue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, struct ut_metric *op_use_diff); +extern uint32_t ut_exec_enqueue(struct ut_queue *q, struct ut_data **data, size_t burst_cnt, struct ut_metric *op_use_diff, uint16_t thread_idx); +extern void ut_exit_data_destory(struct ut_exit_data *data); +extern struct ut_exit_data *ut_exit_data_create(struct ut_thread_arg *t_arg); +extern void ut_wait_all_threads_ready(struct ut_ctl *ctl); +extern void ut_queue_destory(struct ut_queue *q); +extern int ut_queue_init_bbq(struct ut_cfg *cfg, struct ut_queue *q); +extern void ut_merge_all_data(struct ut_exit_data **exit_data, uint32_t thread_cnt, struct ut_merge_s *merge); +extern uint64_t bbq_head_idx(struct bbq *q, uint64_t x); +extern uint64_t bbq_cur_off(struct bbq *q, uint64_t x); +extern uint64_t bbq_head_vsn(struct bbq *q, uint64_t x); +extern uint64_t bbq_cur_vsn(struct bbq *q, uint64_t x); +extern struct ut_data **ut_data_create(size_t cnt, enum ut_data_type); +extern void ut_data_destory(struct ut_data **data, size_t cnt); +extern bool bbq_debug_check_array_bounds(struct bbq *q); +extern struct bbq *bbq_create_elem_with_bnbs(const char *name, uint32_t bn, + uint32_t bs, size_t obj_size, + int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f); +extern struct bbq *bbq_create_with_bnbs(const char *name, uint32_t bn, uint32_t bs, + int socket_id, uint32_t flags, + bbq_malloc_f malloc_f, bbq_free_f free_f);
\ No newline at end of file |
