summaryrefslogtreecommitdiff
path: root/tests/unit/bitops.tcl
diff options
context:
space:
mode:
Diffstat (limited to 'tests/unit/bitops.tcl')
-rw-r--r--tests/unit/bitops.tcl351
1 files changed, 351 insertions, 0 deletions
diff --git a/tests/unit/bitops.tcl b/tests/unit/bitops.tcl
new file mode 100644
index 0000000..926f382
--- /dev/null
+++ b/tests/unit/bitops.tcl
@@ -0,0 +1,351 @@
+# Compare Redis commands against Tcl implementations of the same commands.
+proc count_bits s {
+ binary scan $s b* bits
+ string length [regsub -all {0} $bits {}]
+}
+
+proc simulate_bit_op {op args} {
+ set maxlen 0
+ set j 0
+ set count [llength $args]
+ foreach a $args {
+ binary scan $a b* bits
+ set b($j) $bits
+ if {[string length $bits] > $maxlen} {
+ set maxlen [string length $bits]
+ }
+ incr j
+ }
+ for {set j 0} {$j < $count} {incr j} {
+ if {[string length $b($j)] < $maxlen} {
+ append b($j) [string repeat 0 [expr $maxlen-[string length $b($j)]]]
+ }
+ }
+ set out {}
+ for {set x 0} {$x < $maxlen} {incr x} {
+ set bit [string range $b(0) $x $x]
+ if {$op eq {not}} {set bit [expr {!$bit}]}
+ for {set j 1} {$j < $count} {incr j} {
+ set bit2 [string range $b($j) $x $x]
+ switch $op {
+ and {set bit [expr {$bit & $bit2}]}
+ or {set bit [expr {$bit | $bit2}]}
+ xor {set bit [expr {$bit ^ $bit2}]}
+ }
+ }
+ append out $bit
+ }
+ binary format b* $out
+}
+
+start_server {tags {"bitops"}} {
+ test {BITCOUNT returns 0 against non existing key} {
+ r bitcount no-key
+ } 0
+
+ test {BITCOUNT returns 0 with out of range indexes} {
+ r set str "xxxx"
+ r bitcount str 4 10
+ } 0
+
+ test {BITCOUNT returns 0 with negative indexes where start > end} {
+ r set str "xxxx"
+ r bitcount str -6 -7
+ } 0
+
+ catch {unset num}
+ foreach vec [list "" "\xaa" "\x00\x00\xff" "foobar" "123"] {
+ incr num
+ test "BITCOUNT against test vector #$num" {
+ r set str $vec
+ assert {[r bitcount str] == [count_bits $vec]}
+ }
+ }
+
+ test {BITCOUNT fuzzing without start/end} {
+ for {set j 0} {$j < 100} {incr j} {
+ set str [randstring 0 3000]
+ r set str $str
+ assert {[r bitcount str] == [count_bits $str]}
+ }
+ }
+
+ test {BITCOUNT fuzzing with start/end} {
+ for {set j 0} {$j < 100} {incr j} {
+ set str [randstring 0 3000]
+ r set str $str
+ set l [string length $str]
+ set start [randomInt $l]
+ set end [randomInt $l]
+ if {$start > $end} {
+ lassign [list $end $start] start end
+ }
+ assert {[r bitcount str $start $end] == [count_bits [string range $str $start $end]]}
+ }
+ }
+
+ test {BITCOUNT with start, end} {
+ r set s "foobar"
+ assert_equal [r bitcount s 0 -1] [count_bits "foobar"]
+ assert_equal [r bitcount s 1 -2] [count_bits "ooba"]
+ assert_equal [r bitcount s -2 1] [count_bits ""]
+ assert_equal [r bitcount s 0 1000] [count_bits "foobar"]
+ }
+
+ test {BITCOUNT syntax error #1} {
+ catch {r bitcount s 0} e
+ set e
+ } {ERR*syntax*}
+
+ test {BITCOUNT regression test for github issue #582} {
+ r del foo
+ r setbit foo 0 1
+ if {[catch {r bitcount foo 0 4294967296} e]} {
+ assert_match {*ERR*out of range*} $e
+ set _ 1
+ } else {
+ set e
+ }
+ } {1}
+
+ test {BITCOUNT misaligned prefix} {
+ r del str
+ r set str ab
+ r bitcount str 1 -1
+ } {3}
+
+ test {BITCOUNT misaligned prefix + full words + remainder} {
+ r del str
+ r set str __PPxxxxxxxxxxxxxxxxRR__
+ r bitcount str 2 -3
+ } {74}
+
+ test {BITOP NOT (empty string)} {
+ r set s ""
+ r bitop not dest s
+ r get dest
+ } {}
+
+ test {BITOP NOT (known string)} {
+ r set s "\xaa\x00\xff\x55"
+ r bitop not dest s
+ r get dest
+ } "\x55\xff\x00\xaa"
+
+ test {BITOP where dest and target are the same key} {
+ r set s "\xaa\x00\xff\x55"
+ r bitop not s s
+ r get s
+ } "\x55\xff\x00\xaa"
+
+ test {BITOP AND|OR|XOR don't change the string with single input key} {
+ r set a "\x01\x02\xff"
+ r bitop and res1 a
+ r bitop or res2 a
+ r bitop xor res3 a
+ list [r get res1] [r get res2] [r get res3]
+ } [list "\x01\x02\xff" "\x01\x02\xff" "\x01\x02\xff"]
+
+ test {BITOP missing key is considered a stream of zero} {
+ r set a "\x01\x02\xff"
+ r bitop and res1 no-suck-key a
+ r bitop or res2 no-suck-key a no-such-key
+ r bitop xor res3 no-such-key a
+ list [r get res1] [r get res2] [r get res3]
+ } [list "\x00\x00\x00" "\x01\x02\xff" "\x01\x02\xff"]
+
+ test {BITOP shorter keys are zero-padded to the key with max length} {
+ r set a "\x01\x02\xff\xff"
+ r set b "\x01\x02\xff"
+ r bitop and res1 a b
+ r bitop or res2 a b
+ r bitop xor res3 a b
+ list [r get res1] [r get res2] [r get res3]
+ } [list "\x01\x02\xff\x00" "\x01\x02\xff\xff" "\x00\x00\x00\xff"]
+
+ foreach op {and or xor} {
+ test "BITOP $op fuzzing" {
+ for {set i 0} {$i < 10} {incr i} {
+ r flushall
+ set vec {}
+ set veckeys {}
+ set numvec [expr {[randomInt 10]+1}]
+ for {set j 0} {$j < $numvec} {incr j} {
+ set str [randstring 0 1000]
+ lappend vec $str
+ lappend veckeys vector_$j
+ r set vector_$j $str
+ }
+ r bitop $op target {*}$veckeys
+ assert_equal [r get target] [simulate_bit_op $op {*}$vec]
+ }
+ }
+ }
+
+ test {BITOP NOT fuzzing} {
+ for {set i 0} {$i < 10} {incr i} {
+ r flushall
+ set str [randstring 0 1000]
+ r set str $str
+ r bitop not target str
+ assert_equal [r get target] [simulate_bit_op not $str]
+ }
+ }
+
+ test {BITOP with integer encoded source objects} {
+ r set a 1
+ r set b 2
+ r bitop xor dest a b a
+ r get dest
+ } {2}
+
+ test {BITOP with non string source key} {
+ r del c
+ r set a 1
+ r set b 2
+ r lpush c foo
+ catch {r bitop xor dest a b c d} e
+ set e
+ } {WRONGTYPE*}
+
+ test {BITOP with empty string after non empty string (issue #529)} {
+ r flushdb
+ r set a "\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00"
+ r bitop or x a b
+ } {32}
+
+ test {BITPOS bit=0 with empty key returns 0} {
+ r del str
+ r bitpos str 0
+ } {0}
+
+ test {BITPOS bit=1 with empty key returns -1} {
+ r del str
+ r bitpos str 1
+ } {-1}
+
+ test {BITPOS bit=0 with string less than 1 word works} {
+ r set str "\xff\xf0\x00"
+ r bitpos str 0
+ } {12}
+
+ test {BITPOS bit=1 with string less than 1 word works} {
+ r set str "\x00\x0f\x00"
+ r bitpos str 1
+ } {12}
+
+ test {BITPOS bit=0 starting at unaligned address} {
+ r set str "\xff\xf0\x00"
+ r bitpos str 0 1
+ } {12}
+
+ test {BITPOS bit=1 starting at unaligned address} {
+ r set str "\x00\x0f\xff"
+ r bitpos str 1 1
+ } {12}
+
+ test {BITPOS bit=0 unaligned+full word+reminder} {
+ r del str
+ r set str "\xff\xff\xff" ; # Prefix
+ # Followed by two (or four in 32 bit systems) full words
+ r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
+ r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
+ r append str "\xff\xff\xff\xff\xff\xff\xff\xff"
+ # First zero bit.
+ r append str "\x0f"
+ assert {[r bitpos str 0] == 216}
+ assert {[r bitpos str 0 1] == 216}
+ assert {[r bitpos str 0 2] == 216}
+ assert {[r bitpos str 0 3] == 216}
+ assert {[r bitpos str 0 4] == 216}
+ assert {[r bitpos str 0 5] == 216}
+ assert {[r bitpos str 0 6] == 216}
+ assert {[r bitpos str 0 7] == 216}
+ assert {[r bitpos str 0 8] == 216}
+ }
+
+ test {BITPOS bit=1 unaligned+full word+reminder} {
+ r del str
+ r set str "\x00\x00\x00" ; # Prefix
+ # Followed by two (or four in 32 bit systems) full words
+ r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
+ r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
+ r append str "\x00\x00\x00\x00\x00\x00\x00\x00"
+ # First zero bit.
+ r append str "\xf0"
+ assert {[r bitpos str 1] == 216}
+ assert {[r bitpos str 1 1] == 216}
+ assert {[r bitpos str 1 2] == 216}
+ assert {[r bitpos str 1 3] == 216}
+ assert {[r bitpos str 1 4] == 216}
+ assert {[r bitpos str 1 5] == 216}
+ assert {[r bitpos str 1 6] == 216}
+ assert {[r bitpos str 1 7] == 216}
+ assert {[r bitpos str 1 8] == 216}
+ }
+
+ test {BITPOS bit=1 returns -1 if string is all 0 bits} {
+ r set str ""
+ for {set j 0} {$j < 20} {incr j} {
+ assert {[r bitpos str 1] == -1}
+ r append str "\x00"
+ }
+ }
+
+ test {BITPOS bit=0 works with intervals} {
+ r set str "\x00\xff\x00"
+ assert {[r bitpos str 0 0 -1] == 0}
+ assert {[r bitpos str 0 1 -1] == 16}
+ assert {[r bitpos str 0 2 -1] == 16}
+ assert {[r bitpos str 0 2 200] == 16}
+ assert {[r bitpos str 0 1 1] == -1}
+ }
+
+ test {BITPOS bit=1 works with intervals} {
+ r set str "\x00\xff\x00"
+ assert {[r bitpos str 1 0 -1] == 8}
+ assert {[r bitpos str 1 1 -1] == 8}
+ assert {[r bitpos str 1 2 -1] == -1}
+ assert {[r bitpos str 1 2 200] == -1}
+ assert {[r bitpos str 1 1 1] == 8}
+ }
+
+ test {BITPOS bit=0 changes behavior if end is given} {
+ r set str "\xff\xff\xff"
+ assert {[r bitpos str 0] == 24}
+ assert {[r bitpos str 0 0] == 24}
+ assert {[r bitpos str 0 0 -1] == -1}
+ }
+
+ test {BITPOS bit=1 fuzzy testing using SETBIT} {
+ r del str
+ set max 524288; # 64k
+ set first_one_pos -1
+ for {set j 0} {$j < 1000} {incr j} {
+ assert {[r bitpos str 1] == $first_one_pos}
+ set pos [randomInt $max]
+ r setbit str $pos 1
+ if {$first_one_pos == -1 || $first_one_pos > $pos} {
+ # Update the position of the first 1 bit in the array
+ # if the bit we set is on the left of the previous one.
+ set first_one_pos $pos
+ }
+ }
+ }
+
+ test {BITPOS bit=0 fuzzy testing using SETBIT} {
+ set max 524288; # 64k
+ set first_zero_pos $max
+ r set str [string repeat "\xff" [expr $max/8]]
+ for {set j 0} {$j < 1000} {incr j} {
+ assert {[r bitpos str 0] == $first_zero_pos}
+ set pos [randomInt $max]
+ r setbit str $pos 0
+ if {$first_zero_pos > $pos} {
+ # Update the position of the first 0 bit in the array
+ # if the bit we clear is on the left of the previous one.
+ set first_zero_pos $pos
+ }
+ }
+ }
+}