summaryrefslogtreecommitdiff
path: root/src/evict.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/evict.c')
-rw-r--r--src/evict.c547
1 files changed, 547 insertions, 0 deletions
diff --git a/src/evict.c b/src/evict.c
new file mode 100644
index 0000000..62753c5
--- /dev/null
+++ b/src/evict.c
@@ -0,0 +1,547 @@
+/* Maxmemory directive handling (LRU eviction and other policies).
+ *
+ * ----------------------------------------------------------------------------
+ *
+ * Copyright (c) 2009-2016, Salvatore Sanfilippo <antirez at gmail dot com>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Redis nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "server.h"
+#include "bio.h"
+
+/* ----------------------------------------------------------------------------
+ * Data structures
+ * --------------------------------------------------------------------------*/
+
+/* To improve the quality of the LRU approximation we take a set of keys
+ * that are good candidate for eviction across freeMemoryIfNeeded() calls.
+ *
+ * Entries inside the eviciton pool are taken ordered by idle time, putting
+ * greater idle times to the right (ascending order).
+ *
+ * When an LFU policy is used instead, a reverse frequency indication is used
+ * instead of the idle time, so that we still evict by larger value (larger
+ * inverse frequency means to evict keys with the least frequent accesses).
+ *
+ * Empty entries have the key pointer set to NULL. */
+#define EVPOOL_SIZE 16
+#define EVPOOL_CACHED_SDS_SIZE 255
+struct evictionPoolEntry {
+ unsigned long long idle; /* Object idle time (inverse frequency for LFU) */
+ sds key; /* Key name. */
+ sds cached; /* Cached SDS object for key name. */
+ int dbid; /* Key DB number. */
+};
+
+static struct evictionPoolEntry *EvictionPoolLRU;
+
+unsigned long LFUDecrAndReturn(robj *o);
+
+/* ----------------------------------------------------------------------------
+ * Implementation of eviction, aging and LRU
+ * --------------------------------------------------------------------------*/
+
+/* Return the LRU clock, based on the clock resolution. This is a time
+ * in a reduced-bits format that can be used to set and check the
+ * object->lru field of redisObject structures. */
+unsigned int getLRUClock(void) {
+ return (mstime()/LRU_CLOCK_RESOLUTION) & LRU_CLOCK_MAX;
+}
+
+/* Given an object returns the min number of milliseconds the object was never
+ * requested, using an approximated LRU algorithm. */
+unsigned long long estimateObjectIdleTime(robj *o) {
+ unsigned long long lruclock = LRU_CLOCK();
+ if (lruclock >= o->lru) {
+ return (lruclock - o->lru) * LRU_CLOCK_RESOLUTION;
+ } else {
+ return (lruclock + (LRU_CLOCK_MAX - o->lru)) *
+ LRU_CLOCK_RESOLUTION;
+ }
+}
+
+/* freeMemoryIfNeeded() gets called when 'maxmemory' is set on the config
+ * file to limit the max memory used by the server, before processing a
+ * command.
+ *
+ * The goal of the function is to free enough memory to keep Redis under the
+ * configured memory limit.
+ *
+ * The function starts calculating how many bytes should be freed to keep
+ * Redis under the limit, and enters a loop selecting the best keys to
+ * evict accordingly to the configured policy.
+ *
+ * If all the bytes needed to return back under the limit were freed the
+ * function returns C_OK, otherwise C_ERR is returned, and the caller
+ * should block the execution of commands that will result in more memory
+ * used by the server.
+ *
+ * ------------------------------------------------------------------------
+ *
+ * LRU approximation algorithm
+ *
+ * Redis uses an approximation of the LRU algorithm that runs in constant
+ * memory. Every time there is a key to expire, we sample N keys (with
+ * N very small, usually in around 5) to populate a pool of best keys to
+ * evict of M keys (the pool size is defined by EVPOOL_SIZE).
+ *
+ * The N keys sampled are added in the pool of good keys to expire (the one
+ * with an old access time) if they are better than one of the current keys
+ * in the pool.
+ *
+ * After the pool is populated, the best key we have in the pool is expired.
+ * However note that we don't remove keys from the pool when they are deleted
+ * so the pool may contain keys that no longer exist.
+ *
+ * When we try to evict a key, and all the entries in the pool don't exist
+ * we populate it again. This time we'll be sure that the pool has at least
+ * one key that can be evicted, if there is at least one key that can be
+ * evicted in the whole database. */
+
+/* Create a new eviction pool. */
+void evictionPoolAlloc(void) {
+ struct evictionPoolEntry *ep;
+ int j;
+
+ ep = zmalloc(sizeof(*ep)*EVPOOL_SIZE);
+ for (j = 0; j < EVPOOL_SIZE; j++) {
+ ep[j].idle = 0;
+ ep[j].key = NULL;
+ ep[j].cached = sdsnewlen(NULL,EVPOOL_CACHED_SDS_SIZE);
+ ep[j].dbid = 0;
+ }
+ EvictionPoolLRU = ep;
+}
+
+/* This is an helper function for freeMemoryIfNeeded(), it is used in order
+ * to populate the evictionPool with a few entries every time we want to
+ * expire a key. Keys with idle time smaller than one of the current
+ * keys are added. Keys are always added if there are free entries.
+ *
+ * We insert keys on place in ascending order, so keys with the smaller
+ * idle time are on the left, and keys with the higher idle time on the
+ * right. */
+
+void evictionPoolPopulate(int dbid, dict *sampledict, dict *keydict, struct evictionPoolEntry *pool) {
+ int j, k, count;
+ dictEntry *samples[server.maxmemory_samples];
+
+ count = dictGetSomeKeys(sampledict,samples,server.maxmemory_samples);
+ for (j = 0; j < count; j++) {
+ unsigned long long idle;
+ sds key;
+ robj *o;
+ dictEntry *de;
+
+ de = samples[j];
+ key = dictGetKey(de);
+
+ /* If the dictionary we are sampling from is not the main
+ * dictionary (but the expires one) we need to lookup the key
+ * again in the key dictionary to obtain the value object. */
+ if (server.maxmemory_policy != MAXMEMORY_VOLATILE_TTL) {
+ if (sampledict != keydict) de = dictFind(keydict, key);
+ o = dictGetVal(de);
+ }
+
+ /* Calculate the idle time according to the policy. This is called
+ * idle just because the code initially handled LRU, but is in fact
+ * just a score where an higher score means better candidate. */
+ if (server.maxmemory_policy & MAXMEMORY_FLAG_LRU) {
+ idle = estimateObjectIdleTime(o);
+ } else if (server.maxmemory_policy & MAXMEMORY_FLAG_LFU) {
+ /* When we use an LRU policy, we sort the keys by idle time
+ * so that we expire keys starting from greater idle time.
+ * However when the policy is an LFU one, we have a frequency
+ * estimation, and we want to evict keys with lower frequency
+ * first. So inside the pool we put objects using the inverted
+ * frequency subtracting the actual frequency to the maximum
+ * frequency of 255. */
+ idle = 255-LFUDecrAndReturn(o);
+ } else if (server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL) {
+ /* In this case the sooner the expire the better. */
+ idle = ULLONG_MAX - (long)dictGetVal(de);
+ } else {
+ serverPanic("Unknown eviction policy in evictionPoolPopulate()");
+ }
+
+ /* Insert the element inside the pool.
+ * First, find the first empty bucket or the first populated
+ * bucket that has an idle time smaller than our idle time. */
+ k = 0;
+ while (k < EVPOOL_SIZE &&
+ pool[k].key &&
+ pool[k].idle < idle) k++;
+ if (k == 0 && pool[EVPOOL_SIZE-1].key != NULL) {
+ /* Can't insert if the element is < the worst element we have
+ * and there are no empty buckets. */
+ continue;
+ } else if (k < EVPOOL_SIZE && pool[k].key == NULL) {
+ /* Inserting into empty position. No setup needed before insert. */
+ } else {
+ /* Inserting in the middle. Now k points to the first element
+ * greater than the element to insert. */
+ if (pool[EVPOOL_SIZE-1].key == NULL) {
+ /* Free space on the right? Insert at k shifting
+ * all the elements from k to end to the right. */
+
+ /* Save SDS before overwriting. */
+ sds cached = pool[EVPOOL_SIZE-1].cached;
+ memmove(pool+k+1,pool+k,
+ sizeof(pool[0])*(EVPOOL_SIZE-k-1));
+ pool[k].cached = cached;
+ } else {
+ /* No free space on right? Insert at k-1 */
+ k--;
+ /* Shift all elements on the left of k (included) to the
+ * left, so we discard the element with smaller idle time. */
+ sds cached = pool[0].cached; /* Save SDS before overwriting. */
+ if (pool[0].key != pool[0].cached) sdsfree(pool[0].key);
+ memmove(pool,pool+1,sizeof(pool[0])*k);
+ pool[k].cached = cached;
+ }
+ }
+
+ /* Try to reuse the cached SDS string allocated in the pool entry,
+ * because allocating and deallocating this object is costly
+ * (according to the profiler, not my fantasy. Remember:
+ * premature optimizbla bla bla bla. */
+ int klen = sdslen(key);
+ if (klen > EVPOOL_CACHED_SDS_SIZE) {
+ pool[k].key = sdsdup(key);
+ } else {
+ memcpy(pool[k].cached,key,klen+1);
+ sdssetlen(pool[k].cached,klen);
+ pool[k].key = pool[k].cached;
+ }
+ pool[k].idle = idle;
+ pool[k].dbid = dbid;
+ }
+}
+
+/* ----------------------------------------------------------------------------
+ * LFU (Least Frequently Used) implementation.
+
+ * We have 24 total bits of space in each object in order to implement
+ * an LFU (Least Frequently Used) eviction policy, since we re-use the
+ * LRU field for this purpose.
+ *
+ * We split the 24 bits into two fields:
+ *
+ * 16 bits 8 bits
+ * +----------------+--------+
+ * + Last decr time | LOG_C |
+ * +----------------+--------+
+ *
+ * LOG_C is a logarithmic counter that provides an indication of the access
+ * frequency. However this field must also be decremented otherwise what used
+ * to be a frequently accessed key in the past, will remain ranked like that
+ * forever, while we want the algorithm to adapt to access pattern changes.
+ *
+ * So the remaining 16 bits are used in order to store the "decrement time",
+ * a reduced-precision Unix time (we take 16 bits of the time converted
+ * in minutes since we don't care about wrapping around) where the LOG_C
+ * counter is halved if it has an high value, or just decremented if it
+ * has a low value.
+ *
+ * New keys don't start at zero, in order to have the ability to collect
+ * some accesses before being trashed away, so they start at COUNTER_INIT_VAL.
+ * The logarithmic increment performed on LOG_C takes care of COUNTER_INIT_VAL
+ * when incrementing the key, so that keys starting at COUNTER_INIT_VAL
+ * (or having a smaller value) have a very high chance of being incremented
+ * on access.
+ *
+ * During decrement, the value of the logarithmic counter is halved if
+ * its current value is greater than two times the COUNTER_INIT_VAL, otherwise
+ * it is just decremented by one.
+ * --------------------------------------------------------------------------*/
+
+/* Return the current time in minutes, just taking the least significant
+ * 16 bits. The returned time is suitable to be stored as LDT (last decrement
+ * time) for the LFU implementation. */
+unsigned long LFUGetTimeInMinutes(void) {
+ return (server.unixtime/60) & 65535;
+}
+
+/* Given an object last decrement time, compute the minimum number of minutes
+ * that elapsed since the last decrement. Handle overflow (ldt greater than
+ * the current 16 bits minutes time) considering the time as wrapping
+ * exactly once. */
+unsigned long LFUTimeElapsed(unsigned long ldt) {
+ unsigned long now = LFUGetTimeInMinutes();
+ if (now >= ldt) return now-ldt;
+ return 65535-ldt+now;
+}
+
+/* Logarithmically increment a counter. The greater is the current counter value
+ * the less likely is that it gets really implemented. Saturate it at 255. */
+uint8_t LFULogIncr(uint8_t counter) {
+ if (counter == 255) return 255;
+ double r = (double)rand()/RAND_MAX;
+ double baseval = counter - LFU_INIT_VAL;
+ if (baseval < 0) baseval = 0;
+ double p = 1.0/(baseval*server.lfu_log_factor+1);
+ if (r < p) counter++;
+ return counter;
+}
+
+/* If the object decrement time is reached, decrement the LFU counter and
+ * update the decrement time field. Return the object frequency counter.
+ *
+ * This function is used in order to scan the dataset for the best object
+ * to fit: as we check for the candidate, we incrementally decrement the
+ * counter of the scanned objects if needed. */
+#define LFU_DECR_INTERVAL 1
+unsigned long LFUDecrAndReturn(robj *o) {
+ unsigned long ldt = o->lru >> 8;
+ unsigned long counter = o->lru & 255;
+ if (LFUTimeElapsed(ldt) >= server.lfu_decay_time && counter) {
+ if (counter > LFU_INIT_VAL*2) {
+ counter /= 2;
+ if (counter < LFU_INIT_VAL*2) counter = LFU_INIT_VAL*2;
+ } else {
+ counter--;
+ }
+ o->lru = (LFUGetTimeInMinutes()<<8) | counter;
+ }
+ return counter;
+}
+
+/* ----------------------------------------------------------------------------
+ * The external API for eviction: freeMemroyIfNeeded() is called by the
+ * server when there is data to add in order to make space if needed.
+ * --------------------------------------------------------------------------*/
+
+/* We don't want to count AOF buffers and slaves output buffers as
+ * used memory: the eviction should use mostly data size. This function
+ * returns the sum of AOF and slaves buffer. */
+size_t freeMemoryGetNotCountedMemory(void) {
+ size_t overhead = 0;
+ int slaves = listLength(server.slaves);
+
+ if (slaves) {
+ listIter li;
+ listNode *ln;
+
+ listRewind(server.slaves,&li);
+ while((ln = listNext(&li))) {
+ client *slave = listNodeValue(ln);
+ overhead += getClientOutputBufferMemoryUsage(slave);
+ }
+ }
+ if (server.aof_state != AOF_OFF) {
+ overhead += sdslen(server.aof_buf)+aofRewriteBufferSize();
+ }
+ return overhead;
+}
+
+int freeMemoryIfNeeded(void) {
+ size_t mem_reported, mem_used, mem_tofree, mem_freed;
+ mstime_t latency, eviction_latency;
+ long long delta;
+ int slaves = listLength(server.slaves);
+
+ /* Check if we are over the memory usage limit. If we are not, no need
+ * to subtract the slaves output buffers. We can just return ASAP. */
+ mem_reported = zmalloc_used_memory();
+ if (mem_reported <= server.maxmemory) return C_OK;
+
+ /* Remove the size of slaves output buffers and AOF buffer from the
+ * count of used memory. */
+ mem_used = mem_reported;
+ size_t overhead = freeMemoryGetNotCountedMemory();
+ mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
+
+ /* Check if we are still over the memory limit. */
+ if (mem_used <= server.maxmemory) return C_OK;
+
+ /* Compute how much memory we need to free. */
+ mem_tofree = mem_used - server.maxmemory;
+ mem_freed = 0;
+
+ if (server.maxmemory_policy == MAXMEMORY_NO_EVICTION)
+ goto cant_free; /* We need to free memory, but policy forbids. */
+
+ latencyStartMonitor(latency);
+ while (mem_freed < mem_tofree) {
+ int j, k, i, keys_freed = 0;
+ static int next_db = 0;
+ sds bestkey = NULL;
+ int bestdbid;
+ redisDb *db;
+ dict *dict;
+ dictEntry *de;
+
+ if (server.maxmemory_policy & (MAXMEMORY_FLAG_LRU|MAXMEMORY_FLAG_LFU) ||
+ server.maxmemory_policy == MAXMEMORY_VOLATILE_TTL)
+ {
+ struct evictionPoolEntry *pool = EvictionPoolLRU;
+
+ while(bestkey == NULL) {
+ unsigned long total_keys = 0, keys;
+
+ /* We don't want to make local-db choices when expiring keys,
+ * so to start populate the eviction pool sampling keys from
+ * every DB. */
+ for (i = 0; i < server.dbnum; i++) {
+ db = server.db+i;
+ dict = (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) ?
+ db->dict : db->expires;
+ if ((keys = dictSize(dict)) != 0) {
+ evictionPoolPopulate(i, dict, db->dict, pool);
+ total_keys += keys;
+ }
+ }
+ if (!total_keys) break; /* No keys to evict. */
+
+ /* Go backward from best to worst element to evict. */
+ for (k = EVPOOL_SIZE-1; k >= 0; k--) {
+ if (pool[k].key == NULL) continue;
+ bestdbid = pool[k].dbid;
+
+ if (server.maxmemory_policy & MAXMEMORY_FLAG_ALLKEYS) {
+ de = dictFind(server.db[pool[k].dbid].dict,
+ pool[k].key);
+ } else {
+ de = dictFind(server.db[pool[k].dbid].expires,
+ pool[k].key);
+ }
+
+ /* Remove the entry from the pool. */
+ if (pool[k].key != pool[k].cached)
+ sdsfree(pool[k].key);
+ pool[k].key = NULL;
+ pool[k].idle = 0;
+
+ /* If the key exists, is our pick. Otherwise it is
+ * a ghost and we need to try the next element. */
+ if (de) {
+ bestkey = dictGetKey(de);
+ break;
+ } else {
+ /* Ghost... Iterate again. */
+ }
+ }
+ }
+ }
+
+ /* volatile-random and allkeys-random policy */
+ else if (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM ||
+ server.maxmemory_policy == MAXMEMORY_VOLATILE_RANDOM)
+ {
+ /* When evicting a random key, we try to evict a key for
+ * each DB, so we use the static 'next_db' variable to
+ * incrementally visit all DBs. */
+ for (i = 0; i < server.dbnum; i++) {
+ j = (++next_db) % server.dbnum;
+ db = server.db+j;
+ dict = (server.maxmemory_policy == MAXMEMORY_ALLKEYS_RANDOM) ?
+ db->dict : db->expires;
+ if (dictSize(dict) != 0) {
+ de = dictGetRandomKey(dict);
+ bestkey = dictGetKey(de);
+ bestdbid = j;
+ break;
+ }
+ }
+ }
+
+ /* Finally remove the selected key. */
+ if (bestkey) {
+ db = server.db+bestdbid;
+ robj *keyobj = createStringObject(bestkey,sdslen(bestkey));
+ propagateExpire(db,keyobj,server.lazyfree_lazy_eviction);
+ /* We compute the amount of memory freed by db*Delete() alone.
+ * It is possible that actually the memory needed to propagate
+ * the DEL in AOF and replication link is greater than the one
+ * we are freeing removing the key, but we can't account for
+ * that otherwise we would never exit the loop.
+ *
+ * AOF and Output buffer memory will be freed eventually so
+ * we only care about memory used by the key space. */
+ delta = (long long) zmalloc_used_memory();
+ latencyStartMonitor(eviction_latency);
+ if (server.lazyfree_lazy_eviction)
+ dbAsyncDelete(db,keyobj);
+ else
+ dbSyncDelete(db,keyobj);
+ latencyEndMonitor(eviction_latency);
+ latencyAddSampleIfNeeded("eviction-del",eviction_latency);
+ latencyRemoveNestedEvent(latency,eviction_latency);
+ delta -= (long long) zmalloc_used_memory();
+ mem_freed += delta;
+ server.stat_evictedkeys++;
+ notifyKeyspaceEvent(NOTIFY_EVICTED, "evicted",
+ keyobj, db->id);
+ decrRefCount(keyobj);
+ keys_freed++;
+
+ /* When the memory to free starts to be big enough, we may
+ * start spending so much time here that is impossible to
+ * deliver data to the slaves fast enough, so we force the
+ * transmission here inside the loop. */
+ if (slaves) flushSlavesOutputBuffers();
+
+ /* Normally our stop condition is the ability to release
+ * a fixed, pre-computed amount of memory. However when we
+ * are deleting objects in another thread, it's better to
+ * check, from time to time, if we already reached our target
+ * memory, since the "mem_freed" amount is computed only
+ * across the dbAsyncDelete() call, while the thread can
+ * release the memory all the time. */
+ if (server.lazyfree_lazy_eviction && !(keys_freed % 16)) {
+ overhead = freeMemoryGetNotCountedMemory();
+ mem_used = zmalloc_used_memory();
+ mem_used = (mem_used > overhead) ? mem_used-overhead : 0;
+ if (mem_used <= server.maxmemory) {
+ mem_freed = mem_tofree;
+ }
+ }
+ }
+
+ if (!keys_freed) {
+ latencyEndMonitor(latency);
+ latencyAddSampleIfNeeded("eviction-cycle",latency);
+ goto cant_free; /* nothing to free... */
+ }
+ }
+ latencyEndMonitor(latency);
+ latencyAddSampleIfNeeded("eviction-cycle",latency);
+ return C_OK;
+
+cant_free:
+ /* We are here if we are not able to reclaim memory. There is only one
+ * last thing we can try: check if the lazyfree thread has jobs in queue
+ * and wait... */
+ while(bioPendingJobsOfType(BIO_LAZY_FREE)) {
+ if (((mem_reported - zmalloc_used_memory()) + mem_freed) >= mem_tofree)
+ break;
+ usleep(1000);
+ }
+ return C_ERR;
+}
+