summaryrefslogtreecommitdiff
path: root/src/multi.c
diff options
context:
space:
mode:
authorbyte2016 <[email protected]>2018-06-12 19:55:38 +0800
committerbyte2016 <[email protected]>2018-06-12 19:55:38 +0800
commit76f2c13d7c27d7419af79ea0bdc7ab7717b6935b (patch)
treeaa2ca741501d40990b892d504a1cc3b7defe57aa /src/multi.c
Init commit.HEADmaster
Diffstat (limited to 'src/multi.c')
-rw-r--r--src/multi.c323
1 files changed, 323 insertions, 0 deletions
diff --git a/src/multi.c b/src/multi.c
new file mode 100644
index 0000000..d8384c1
--- /dev/null
+++ b/src/multi.c
@@ -0,0 +1,323 @@
+/*
+ * Copyright (c) 2009-2012, Salvatore Sanfilippo <antirez at gmail dot com>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Redis nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "server.h"
+
+/* ================================ MULTI/EXEC ============================== */
+
+/* Client state initialization for MULTI/EXEC */
+void initClientMultiState(client *c) {
+ c->mstate.commands = NULL;
+ c->mstate.count = 0;
+}
+
+/* Release all the resources associated with MULTI/EXEC state */
+void freeClientMultiState(client *c) {
+ int j;
+
+ for (j = 0; j < c->mstate.count; j++) {
+ int i;
+ multiCmd *mc = c->mstate.commands+j;
+
+ for (i = 0; i < mc->argc; i++)
+ decrRefCount(mc->argv[i]);
+ zfree(mc->argv);
+ }
+ zfree(c->mstate.commands);
+}
+
+/* Add a new command into the MULTI commands queue */
+void queueMultiCommand(client *c) {
+ multiCmd *mc;
+ int j;
+
+ c->mstate.commands = zrealloc(c->mstate.commands,
+ sizeof(multiCmd)*(c->mstate.count+1));
+ mc = c->mstate.commands+c->mstate.count;
+ mc->cmd = c->cmd;
+ mc->argc = c->argc;
+ mc->argv = zmalloc(sizeof(robj*)*c->argc);
+ memcpy(mc->argv,c->argv,sizeof(robj*)*c->argc);
+ for (j = 0; j < c->argc; j++)
+ incrRefCount(mc->argv[j]);
+ c->mstate.count++;
+}
+
+void discardTransaction(client *c) {
+ freeClientMultiState(c);
+ initClientMultiState(c);
+ c->flags &= ~(CLIENT_MULTI|CLIENT_DIRTY_CAS|CLIENT_DIRTY_EXEC);
+ unwatchAllKeys(c);
+}
+
+/* Flag the transacation as DIRTY_EXEC so that EXEC will fail.
+ * Should be called every time there is an error while queueing a command. */
+void flagTransaction(client *c) {
+ if (c->flags & CLIENT_MULTI)
+ c->flags |= CLIENT_DIRTY_EXEC;
+}
+
+void multiCommand(client *c) {
+ if (c->flags & CLIENT_MULTI) {
+ addReplyError(c,"MULTI calls can not be nested");
+ return;
+ }
+ c->flags |= CLIENT_MULTI;
+ addReply(c,shared.ok);
+}
+
+void discardCommand(client *c) {
+ if (!(c->flags & CLIENT_MULTI)) {
+ addReplyError(c,"DISCARD without MULTI");
+ return;
+ }
+ discardTransaction(c);
+ addReply(c,shared.ok);
+}
+
+/* Send a MULTI command to all the slaves and AOF file. Check the execCommand
+ * implementation for more information. */
+void execCommandPropagateMulti(client *c) {
+ robj *multistring = createStringObject("MULTI",5);
+
+ propagate(server.multiCommand,c->db->id,&multistring,1,
+ PROPAGATE_AOF|PROPAGATE_REPL);
+ decrRefCount(multistring);
+}
+
+void execCommand(client *c) {
+ int j;
+ robj **orig_argv;
+ int orig_argc;
+ struct redisCommand *orig_cmd;
+ int must_propagate = 0; /* Need to propagate MULTI/EXEC to AOF / slaves? */
+
+ if (!(c->flags & CLIENT_MULTI)) {
+ addReplyError(c,"EXEC without MULTI");
+ return;
+ }
+
+ /* Check if we need to abort the EXEC because:
+ * 1) Some WATCHed key was touched.
+ * 2) There was a previous error while queueing commands.
+ * A failed EXEC in the first case returns a multi bulk nil object
+ * (technically it is not an error but a special behavior), while
+ * in the second an EXECABORT error is returned. */
+ if (c->flags & (CLIENT_DIRTY_CAS|CLIENT_DIRTY_EXEC)) {
+ addReply(c, c->flags & CLIENT_DIRTY_EXEC ? shared.execaborterr :
+ shared.nullmultibulk);
+ discardTransaction(c);
+ goto handle_monitor;
+ }
+
+ /* Exec all the queued commands */
+ unwatchAllKeys(c); /* Unwatch ASAP otherwise we'll waste CPU cycles */
+ orig_argv = c->argv;
+ orig_argc = c->argc;
+ orig_cmd = c->cmd;
+ addReplyMultiBulkLen(c,c->mstate.count);
+ for (j = 0; j < c->mstate.count; j++) {
+ c->argc = c->mstate.commands[j].argc;
+ c->argv = c->mstate.commands[j].argv;
+ c->cmd = c->mstate.commands[j].cmd;
+
+ /* Propagate a MULTI request once we encounter the first write op.
+ * This way we'll deliver the MULTI/..../EXEC block as a whole and
+ * both the AOF and the replication link will have the same consistency
+ * and atomicity guarantees. */
+ if (!must_propagate && !(c->cmd->flags & CMD_READONLY)) {
+ execCommandPropagateMulti(c);
+ must_propagate = 1;
+ }
+
+ call(c,CMD_CALL_FULL);
+
+ /* Commands may alter argc/argv, restore mstate. */
+ c->mstate.commands[j].argc = c->argc;
+ c->mstate.commands[j].argv = c->argv;
+ c->mstate.commands[j].cmd = c->cmd;
+ }
+ c->argv = orig_argv;
+ c->argc = orig_argc;
+ c->cmd = orig_cmd;
+ discardTransaction(c);
+ /* Make sure the EXEC command will be propagated as well if MULTI
+ * was already propagated. */
+ if (must_propagate) server.dirty++;
+
+handle_monitor:
+ /* Send EXEC to clients waiting data from MONITOR. We do it here
+ * since the natural order of commands execution is actually:
+ * MUTLI, EXEC, ... commands inside transaction ...
+ * Instead EXEC is flagged as CMD_SKIP_MONITOR in the command
+ * table, and we do it here with correct ordering. */
+ if (listLength(server.monitors) && !server.loading)
+ replicationFeedMonitors(c,server.monitors,c->db->id,c->argv,c->argc);
+}
+
+/* ===================== WATCH (CAS alike for MULTI/EXEC) ===================
+ *
+ * The implementation uses a per-DB hash table mapping keys to list of clients
+ * WATCHing those keys, so that given a key that is going to be modified
+ * we can mark all the associated clients as dirty.
+ *
+ * Also every client contains a list of WATCHed keys so that's possible to
+ * un-watch such keys when the client is freed or when UNWATCH is called. */
+
+/* In the client->watched_keys list we need to use watchedKey structures
+ * as in order to identify a key in Redis we need both the key name and the
+ * DB */
+typedef struct watchedKey {
+ robj *key;
+ redisDb *db;
+} watchedKey;
+
+/* Watch for the specified key */
+void watchForKey(client *c, robj *key) {
+ list *clients = NULL;
+ listIter li;
+ listNode *ln;
+ watchedKey *wk;
+
+ /* Check if we are already watching for this key */
+ listRewind(c->watched_keys,&li);
+ while((ln = listNext(&li))) {
+ wk = listNodeValue(ln);
+ if (wk->db == c->db && equalStringObjects(key,wk->key))
+ return; /* Key already watched */
+ }
+ /* This key is not already watched in this DB. Let's add it */
+ clients = dictFetchValue(c->db->watched_keys,key);
+ if (!clients) {
+ clients = listCreate();
+ dictAdd(c->db->watched_keys,key,clients);
+ incrRefCount(key);
+ }
+ listAddNodeTail(clients,c);
+ /* Add the new key to the list of keys watched by this client */
+ wk = zmalloc(sizeof(*wk));
+ wk->key = key;
+ wk->db = c->db;
+ incrRefCount(key);
+ listAddNodeTail(c->watched_keys,wk);
+}
+
+/* Unwatch all the keys watched by this client. To clean the EXEC dirty
+ * flag is up to the caller. */
+void unwatchAllKeys(client *c) {
+ listIter li;
+ listNode *ln;
+
+ if (listLength(c->watched_keys) == 0) return;
+ listRewind(c->watched_keys,&li);
+ while((ln = listNext(&li))) {
+ list *clients;
+ watchedKey *wk;
+
+ /* Lookup the watched key -> clients list and remove the client
+ * from the list */
+ wk = listNodeValue(ln);
+ clients = dictFetchValue(wk->db->watched_keys, wk->key);
+ serverAssertWithInfo(c,NULL,clients != NULL);
+ listDelNode(clients,listSearchKey(clients,c));
+ /* Kill the entry at all if this was the only client */
+ if (listLength(clients) == 0)
+ dictDelete(wk->db->watched_keys, wk->key);
+ /* Remove this watched key from the client->watched list */
+ listDelNode(c->watched_keys,ln);
+ decrRefCount(wk->key);
+ zfree(wk);
+ }
+}
+
+/* "Touch" a key, so that if this key is being WATCHed by some client the
+ * next EXEC will fail. */
+void touchWatchedKey(redisDb *db, robj *key) {
+ list *clients;
+ listIter li;
+ listNode *ln;
+
+ if (dictSize(db->watched_keys) == 0) return;
+ clients = dictFetchValue(db->watched_keys, key);
+ if (!clients) return;
+
+ /* Mark all the clients watching this key as CLIENT_DIRTY_CAS */
+ /* Check if we are already watching for this key */
+ listRewind(clients,&li);
+ while((ln = listNext(&li))) {
+ client *c = listNodeValue(ln);
+
+ c->flags |= CLIENT_DIRTY_CAS;
+ }
+}
+
+/* On FLUSHDB or FLUSHALL all the watched keys that are present before the
+ * flush but will be deleted as effect of the flushing operation should
+ * be touched. "dbid" is the DB that's getting the flush. -1 if it is
+ * a FLUSHALL operation (all the DBs flushed). */
+void touchWatchedKeysOnFlush(int dbid) {
+ listIter li1, li2;
+ listNode *ln;
+
+ /* For every client, check all the waited keys */
+ listRewind(server.clients,&li1);
+ while((ln = listNext(&li1))) {
+ client *c = listNodeValue(ln);
+ listRewind(c->watched_keys,&li2);
+ while((ln = listNext(&li2))) {
+ watchedKey *wk = listNodeValue(ln);
+
+ /* For every watched key matching the specified DB, if the
+ * key exists, mark the client as dirty, as the key will be
+ * removed. */
+ if (dbid == -1 || wk->db->id == dbid) {
+ if (dictFind(wk->db->dict, wk->key->ptr) != NULL)
+ c->flags |= CLIENT_DIRTY_CAS;
+ }
+ }
+ }
+}
+
+void watchCommand(client *c) {
+ int j;
+
+ if (c->flags & CLIENT_MULTI) {
+ addReplyError(c,"WATCH inside MULTI is not allowed");
+ return;
+ }
+ for (j = 1; j < c->argc; j++)
+ watchForKey(c,c->argv[j]);
+ addReply(c,shared.ok);
+}
+
+void unwatchCommand(client *c) {
+ unwatchAllKeys(c);
+ c->flags &= (~CLIENT_DIRTY_CAS);
+ addReply(c,shared.ok);
+}