1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
|
#coding:utf-8
import networkx as nx
import numpy as np
import csv
import random
import torch
import matplotlib.pyplot as plt
from sklearn.model_selection import StratifiedKFold
import pickle
from itertools import islice
lable_dict = []
for i in range(20):
lable_dict.append({})
# addr0 = ["DDoS_test/"]
addr0 = ['E:/DDoS/DDoS2019/0112/morefeature'] # 总地址
# addr0 = ["muti0311\\csv\\", "0112\\multi\\csv\\"]
addr1 = []
num_class = 13
#addr0311=["1","2","3","4","5","6","7","LDAP","MSSQL","NetBIOS","PortMap","SYN","UDP","UDP-Lag"]
#addr0311=["LDAP","MSSQL","NetBIOS","PortMap","SYN","UDP","UDP-Lag"]
addr0112=["1","2","3","4","5","6","7","8","9","10","11","12","DNS","LDAP","MSSQL","NetBIOS","NTP","SNMP","SSDP","SYN","TFTP","UDP","UDP-Lag","WebDDoS"]
#addr0112=["NTP","SNMP","SSDP","SYN","TFTP","UDP","UDP-Lag","WebDDoS"]
#addr1.append(addr0311)
addr1.append(addr0112)
class S2VGraph(object):
def __init__(self, g, label, node_tags=None, node_features=None):
'''
g: a networkx graph
label: an integer graph label
node_tags: a list of integer node tags
node_features: a torch float tensor, one-hot representation of the tag that is used as input to neural nets
edge_mat: a torch long tensor, contain edge list, will be used to create torch sparse tensor
neighbors: list of neighbors (without self-loop)
'''
self.label = label
self.g = g
self.node_tags = node_tags
self.neighbors = []
self.node_features = 0
self.edge_mat = 0
self.max_neighbor = 0
def csv_dataset(addr, ip_dst):
#addr = "/home/liyuzhen/dataset/"+addr+".csv"
read = csv.reader(open('%s' % addr, 'r'))
len_file = len(open(addr).readlines())
print("addrr: %s: %s" % (addr, len_file))
ip_DDoS = ["172.16.0.5"]
ip_DDoS.append(ip_dst)
ip = {}
num = 0
flows_norm = []
flows_DDoS = []
for row in islice(read, 1, None):
# if(num>100000):
# break
num = num + 1
tmp_one_packet = []
if (row[1] == '') or (row[2] == ''):
continue
a = row[1] + ' ' + row[2]
b = row[2] + ' ' + row[1]
if (a not in ip) and (b not in ip):
ip[a] = len(ip)
flows_norm.append([])
try:
if row[8] == '':
continue
else:
tmp_one_packet.append(int(row[8])) # 包大小0 0
tmp_one_packet.append(row[9]) # 协议1 1
if row[5] != '': # 3 2
if int(row[5]) <= 1024:
tmp_one_packet.append(int(row[5]))
# print(row[7])
elif int(row[6]) <= 1024:
tmp_one_packet.append(int(row[6]))
# print(row[8])
else:
tmp_one_packet.append(1025)
# print('no port smaller than 1024:%s,%d,%s'%(addr,num,row))
else:
tmp_one_packet.append(-1)
if row[19] != '':
tmp_one_packet.append(int(row[19])) # tcp.window_size15 3
else:
tmp_one_packet.append(-1)
if row[21] != '':
tmp_one_packet.append(row[21]) # tcp.flags17 4
else:
tmp_one_packet.append(-1)
if row[23] != '':
tmp_one_packet.append(row[23]) # ip.ttl19 5
else:
tmp_one_packet.append(-1)
except Exception as e:
print(f'error in {addr}, row {num}, erro {e.args}_')
continue
'''
if row[3] != '': # 2
if int(row[3]) < 0:
print('port smaller than 0:%s,%d,%s' % (addr, num, row))
if int(row[3]) <= 1024:
tmp_one_packet.append(int(row[3]))
elif int(row[4]) <= 1024:
tmp_one_packet.append(int(row[4]))
else:
tmp_one_packet.append(1025)
else:
tmp_one_packet.append(-1)
if row[7] != '':
tmp_one_packet.append(row[7]) # frame.encap_type4
else:
tmp_one_packet.append(-1) # frame.encap_type
tmp_one_packet.append(float(row[10])) # 时间5
if row[10] != '':
tmp_one_packet.append(float(row[10])) # http.time6
else:
tmp_one_packet.append(-1)
if row[11] != '':
tmp_one_packet.append(int(row[11])) # icmp.len7
else:
tmp_one_packet.append(-1)
if row[12] != '':
tmp_one_packet.append(row[12]) # icmp.type8
else:
tmp_one_packet.append(-1)
if row[13] != '':
tmp_one_packet.append(row[13]) # irc.request9
else:
tmp_one_packet.append(-1)
if row[14] != '':
tmp_one_packet.append(row[14]) # irc.response10
else:
tmp_one_packet.append(-1)
if row[15] != '':
if row[15] == 0:
tmp_one_packet.append(0) # tcp.ack11
else:
tmp_one_packet.append(1)
else:
tmp_one_packet.append(-1)
if row[16] != '':
tmp_one_packet.append(row[16]) # tcp.ack_rtt12
else:
tmp_one_packet.append(-1)
if row[18] != '':
tmp_one_packet.append(int(row[18])) # tcp.len14
else:
tmp_one_packet.append(-1)
if row[20]!='':
tmp_one_packet.append(int(row[20])) # udp.length16
else:
tmp_one_packet.append(-1)
if row[22] != '':
tmp_one_packet.append(row[22]) # ip.flags18
else:
tmp_one_packet.append(-1)
'''
if a in ip:
tmp_one_packet[0] *= -1
flows_norm[ip[a]].append(tmp_one_packet)
elif (a not in ip) and (b not in ip):
print("error: in csv_dataset")
elif b in ip:
flows_norm[ip[b]].append(tmp_one_packet)
a = ip_DDoS[0] + ' ' + ip_DDoS[1]
b = ip_DDoS[1] + ' ' + ip_DDoS[0]
if a in ip:
flows_DDoS.append(flows_norm[ip[a]])
del flows_norm[ip[a]]
elif b in ip:
flows_DDoS.append(flows_norm[ip[b]])
del flows_norm[ip[b]]
flows_DDoS_dict = {}
len_DDoS = 0
len_norm = 0
for flows in flows_norm:
len_norm += len(flows)
for flows in flows_DDoS:
len1 = len(flows)
len_DDoS += len1
k = int(len1 / 300000)
for i in range(k):
flows_DDoS_dict[i] = flows[i*300000: (i+1) * 300000]
if k * 300000 < len1:
flows_DDoS_dict[k] = flows[(k*300000):]
# print(flows_DDoS_dict)
print('len_DDoS: %d' % len_DDoS)
print('len_norm: %d' % len_norm)
return flows_DDoS_dict, flows_norm, len_DDoS, len_norm
# return flows_DDoS,flows_norm
def cons_graph(all_traffic, num_node, tags, len_file, rseed):
g_list = []
# print("len all_traffic: %s" %len(all_traffic))
num_graph = int(len(all_traffic) / num_node)
# print("num_graph: %s" %num_graph)
# print(num_graph)
last_graph = len(all_traffic) - num_node*num_graph
for y in range(num_graph):
g = nx.Graph()
node_first = 0
node_last = 0
node_tags = []
# node_features = []
a = 0
for z in range(num_node):
traffic = num_node * y + z
# if traffic != 0:
# all_traffic[traffic][5] = float(all_traffic[traffic-1][5]) - float(all_traffic[traffic][5])
g.add_node(z)
node_tags.append(all_traffic[traffic])
'''
node_tags.append([])
#print(f"len(all_traffic[traffic]): {len(all_traffic[traffic])}")
for i in range(len(all_traffic[traffic])):
if(all_traffic[traffic][i] not in lable_dict[i].keys() ):
lable_dict[i][all_traffic[traffic][i]]=len(lable_dict[i])
#print(lable_dict)
#print("label dict: %s" %lable_dict)
node_tags[z].append(lable_dict[i][all_traffic[traffic][i]])
'''
# node_features.append(all_traffic[traffic][0])
if z > 0: # 构造图的边
if all_traffic[traffic][0] * all_traffic[traffic-1][0] > 0:
# print(1)
g.add_edge(z-1, z)
# nx.draw(g,with_labels=True,pos=nx.circular_layout(g))
# plt.show()
else:
# print(2)
g.add_edge(z, node_first)
a = a+1
# plt.show()
if a >= 2:
g.add_edge(node_last, z-1)
# nx.draw(g,with_labels=True,edge_color='b',pos=nx.circular_layout(g))
node_first=z
node_last=z-1
g.add_edge(z, node_last)
g_list.append(S2VGraph(g, tags, node_tags))
'''
以下是一些平衡训练集和按比例取测试集的结果,但实际运行起来有训练集和测试集的准确率差太多的问题
'''
random.seed(rseed)
random.shuffle(g_list)
len_test = int(len(g_list) * 0.02)
if (len_test < 30) and tags != 0:
len_test = 30
if (len_test < 1) and tags == 0:
len_test = 1
g_test = g_list[0: len_test]
dataset_num = 20000
if (tags != 0) and (len_file >= (30 * dataset_num + len_test * 30)):
len_train = len_test + int((len(all_traffic) / float(len_file)) * dataset_num)
g_train = g_list[len_test: len_train]
else:
g_train = g_list[len_test: dataset_num + len_test]
print(f"cons graph sum: {len(g_list)}")
print(f"cons graph train: {len(g_train)}")
print(f"cons graph test: {len(g_test)}")
'''
if(tags!=0) and (len(g_list) >= (10000+len_test)):
len_train=len_test+10000
g_train=g_list[len_test:len_train]
else:
g_train=g_list[len_test:len(g_list)]
'''
del g_list
return g_test, g_train
#return g_list
def load_data(degree_as_tag,para):
'''
dataset: name of dataset
test_proportion: ratio of test train split
seed: random seed for random splitting of dataset
'''
print('loading data')
# g_list = []
all_csv_dict = {}
# tag1=[0,0,0,0,0,0,0,"LDAP","MSSQL","NetBIOS","PortMap","SYN","UDP","UDP-Lag"]
# tag1=[0,0,0,0,0,0,0,1,2,3,4,5,6,7]
# tag1=[1,2,3,4,5,6,7]
# tag2=[0,0,0,0,0,0,0,0,0,0,0,"DNS","LDAP","MSSQL","NetBIOS","NTP","SNMP","SSDP","SYN","TFTP","UDP","UDP-Lag","WebDDoS"]
tag2 = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]
tag = []
# tag.append(tag1)
tag.append(tag2)
# ip_dst = ["192.168.50.4"]
ip_dst = ["192.168.50.1"]
# ip_dst = ["192.168.50.4","192.168.50.1"]
tag_flows = {}
class_flow = 13
# num_node = para['num_node']
num_node = 30
random_seeds = [2, 4, 1, 7, 9]
i = 0 # root address
for random_seed in random_seeds:
for j in range(len(addr1[i])):
# g_list = []
g_tralist = []
g_telist = []
# graph_path = "/home/liyuzhen/dataset/" + addr0[i] + '/' + 'graph_lessprotocol/'+ addr1[i][j] + '.pkl'
tra_path = "E:/DDoS/DDoS2019/pkl/" + str(random_seed) + "/" + 'train/' + addr1[i][j] + '.pkl'
te_path = "E:/DDoS/DDoS2019/pkl/" + str(random_seed) + "/" + 'test/' + addr1[i][j] + '.pkl'
# graph = open(graph_path,"wb")
train = open(tra_path, 'wb')
test = open(te_path, 'wb')
addr = addr0[i] + '/' + addr1[i][j] + '.csv'
flows_DDoS, flows_norm, le_DDoS, le_norm = csv_dataset(addr, ip_dst[i])
# load一个文件建一次图
if tag[i][j] != 0:
for k in flows_DDoS.values():
#for k in flows_DDoS:
#print("flow DDoS %s :%s" % (addr1[i][j],len(k)))
g_test, g_train = cons_graph(k, num_node, tag[i][j], le_DDoS, random_seed)
g_tralist.extend(g_train)
g_telist.extend(g_test)
#g_Dlist.extend(cons_graph(k,num_node,tag[i][j],len_file))
#print("graph train DDoS %s :%s" % (addr1[i][j],len(g_tralist)))
#pri`nt("graph test DDoS %s :%s" % (addr1[i][j],len(g_telist)))
#print("graph DDoS %s :%s" % (addr1[i][j],len(g_Dlist)))
#print("flow_DDoS:%s" %len(g_list))
else:
for m in flows_norm:
#print("flow norm %s :%s" % (addr1[i][j],len(m)))
g_test, g_train = cons_graph(m, num_node, 0, le_norm, random_seed)
g_tralist.extend(g_train)
g_telist.extend(g_test)
#print("graph train norm %s :%s" % (addr1[i][j],len(g_tralist)))
#print("graph test norm %s :%s" % (addr1[i][j],len(g_telist)))
'''
li=cons_graph(m,num_node,0,len_file)
if(li != None):
g_Nlist.extend(li)
#print("graph normal %s :%s" % (addr1[i][j],len(g_Nlist)))
#print("flow_norm:%s" %len(g_list))
'''
'''
random.seed(1)
random.shuffle(g_Dlist)
random.shuffle(g_Nlist)
g_telist=g_Dlist[0:int(len(g_Dlist)*0.01)]
g_telist.extend(g_Nlist[0:int(len(g_Nlist)*0.01)])
g_tralist=g_Nlist[int(len(g_Nlist)*0.01):]
if(len(g_tralist)<=10000):
g_tralist.extend(g_Dlist[int(len(g_Dlist)*0.01):])
else:
g_tralist.extend(g_Dlist[int(len(g_Dlist)*0.01):int(len(g_Dlist)*0.01)+10000])
print(len(g_telist))
print(len(g_tralist))
#pickle.dump(g_list,graph)
'''
print(f"{tra_path}: {len(g_tralist)}")
print(f"{te_path}: {len(g_telist)}")
pickle.dump(g_tralist, train)
pickle.dump(g_telist, test)
train.close()
test.close()
#print(label_dict))
def load_data2(degree_as_tag, feature, path):
tagset = []
g_train = []
g_test = []
# m=[100,100,100,100,100,100,100,100,100,100,600,100,100,600]
# m=[200,200,200,200,200,100,0,0,0,100,0,0,1000,1000,1000,1000,1000,1000,1000,1000,1000,1000,813,244]
for i in range(len(addr0)):
for j in range(len(addr1[i])):
graph_path = "E:/DDoS/DDoS2019/0.01#10000pkl/" + str(path) + '/train/' + addr1[i][j] + '.pkl'
graph_test = "E:/DDoS/DDoS2019/0.01#10000pkl/" + str(path) + '/test/' + addr1[i][j]+'.pkl'
graph = open(graph_path, "rb")
graph_test = open(graph_test, "rb")
g_train.extend(pickle.load(graph))
g_test.extend(pickle.load(graph_test))
#print(type(st))
#print(st[1].node_tags)
#print("每个文件的图数量:%d" %len(st))
#random.seed(1)
#st=random.sample(st,m[j])
#st=random.sample(st,int(len(st)*0.1))
#g_list.extend(st)
#print(len(st))
graph.close()
graph_test.close()
a = []
feature = feature.split(",")
for i in range(len(feature)):
if feature[i] != ',':
a.append(int(feature[i]))
print(f"feature: {feature[i]}")
tagset.append({})
feature = a
tagset, g_train = graph_add_features(g_train, degree_as_tag, feature, tagset)
tagset, g_test = graph_add_features(g_test, degree_as_tag, feature, tagset)
#g_train=one_hot(g_train,'train')
#g_test=one_hot(g_test,'test')
#g_train=feature_bin(g_train)
#g_test=feature_bin(g_test)
g_train = block_bin(g_train, tagset)
g_test = block_bin(g_test, tagset)
print('# maximum node tag: %d' % len(tagset))
print("# train data: %d" % len(g_train))
print('#test data: %d' % len(g_test))
return num_class, g_train, g_test
def graph_add_features(g_list, degree_as_tag, feature, tagset):
for g in g_list:
g.neighbors = [[] for i in range(len(g.g))]
for i, j in g.g.edges():
g.neighbors[i].append(j)
g.neighbors[j].append(i)
degree_list = []
for i in range(len(g.g)):
g.neighbors[i] = g.neighbors[i]
degree_list.append(len(g.neighbors[i]))
g.max_neighbor = max(degree_list)
#g.label = lable_dict[g.label]
edges = [list(pair) for pair in g.g.edges()]#拓展边,无向边
edges.extend([[i, j] for j, i in edges])
deg_list = list(dict(g.g.degree(range(len(g.g)))).values())
g.edge_mat = torch.LongTensor(edges).transpose(0,1)
if degree_as_tag:
for g in g_list:
g.node_tags = list(dict(g.g.degree).values())
#Extracting unique tag labels
#tagset={}
#tagset = set([])
for g in g_list:
for j in range(len(g.node_tags)):
if '0' in feature:
g.node_tags[j][0]=int(g.node_tags[j][0]/100)*100
if '5' in feature:
g.node_tags[j][5]=int(g.node[j][5]*100)
m=[]
for i in range(len(feature)):
#print(f"len(g.node_tags: {len(g.node_tags[j])}")
if(g.node_tags[j][feature[i]] not in tagset[i].keys()):
tagset[i][g.node_tags[j][feature[i]]] = len(tagset[i])
m.append(tagset[i][g.node_tags[j][feature[i]]])
g.node_tags[j] = m
#m=m+str(g.node_tags[j][int(feature[i])])+' '
#g.node_tags[j]=m
#print(m)
#if g.node_tags[j] not in tagset:
#tagset[g.node_tags[j]]=len(tagset)
#g.node_tags[j]=tagset[g.node_tags[j]]
#print(tagset)
#print(g.node_tags)
#tagset = tagset.union(set(g.node_tags[fe]))
#print(tagset)
#print("union_end")
#tagset = list(tagset)
#tag2index = {tagset[i]:i for i in range(len(tagset))}
#num_normal=0
#num_DDoS=0
return tagset, g_list
def feature_bin(g_list, tagset):
l = len(bin(len(tagset)).replace('0b',''))
for g in g_list:
g.node_features=torch.zeros(len(g.node_tags),l)
for i in range(len(g.node_tags)):
a=str(bin(g.node_tags[i])).replace('0b','')
for j in range(len(a)):
if(a[j]=='1'):
g.node_features[i,l-len(a)+j]=1
#print('g.node_feature:%s,g.node_tags:%s' % (g.node_features,g.node_tags))
def block_bin(g_list, tagset):
l=[]
m=0
for i in range(len(tagset)):
l.append(len(bin(len(tagset[i])).replace('0b','')))
m += l[i]
#print(tagset)
#print(m)
for g in g_list:
g.node_features=torch.zeros(len(g.node_tags), m)
for j in range(len(g.node_tags)):
for i in range(len(tagset)):
a=str(bin(g.node_tags[j][i])).replace('ob','')
for k in range(len(a)):
if(a[k]=='1'):
if(i != 0):
g.node_features[j,l[i-1]+l[i]-len(a)+k]=1
else:
g.node_features[j,l[i]-len(a)+k]=1
#print('g.node_feature:%s,g.node_tags:%s' % (g.node_features,g.node_tags))
return g_list
def one_hot(g_list, ty, tagset):
num_every={}
for i in range(num_class):
num_every[i]=0
for g in g_list:
num_every[g.label]+=1
g.node_features = torch.zeros(len(g.node_tags), len(tagset))
g.node_features[range(len(g.node_tags)), [tagset[tag] for tag in g.node_tags]] = 1
#print("node_feature")
#print("node_feature end")
#num_DDoS=len(g_list)-num_normal
for i in range(num_class):
print("%s: class %d: %d" %(ty, i, num_every[i]))
#print("num_normal:%d" %num_normal)
#print("num_DDoS:%d" %num_DDoS )
#print("label_dict:%s" % lable_dict)
#print('# classes: %d' %class_flow)
return g_list
def separate_data(graph_list, seed, fold_idx):
assert 0 <= fold_idx and fold_idx < 10, "fold_idx must be from 0 to 9."
skf = StratifiedKFold(n_splits=10, shuffle = True, random_state = seed)
#print(f"skf: {skf}")
labels = [graph.label for graph in graph_list]
idx_list = []
for idx in skf.split(np.zeros(len(labels)), labels):
idx_list.append(idx)
#print(f"idx:{idx}")
#print(idx_list)
train_idx, test_idx = idx_list[fold_idx]
print(f"train_num: {len(train_idx)} \n test_num: {len(test_idx)}")
train_graph_list = [graph_list[i] for i in train_idx]
test_graph_list = [graph_list[i] for i in test_idx]
return train_graph_list, test_graph_list
|