summaryrefslogtreecommitdiff
path: root/src/seal.py
blob: b3acdc9c82c012f0075b5083a6299ac6fc5e7563 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""SEAL-CI model."""

import torch
import random
from tqdm import trange
from layers import SEAL
from utils import hierarchical_graph_reader, GraphDatasetGenerator
from sklearn import metrics
import pandas as pd

class SEALCITrainer(object):
    """
    Semi-Supervised Graph Classification: A Hierarchical Graph Perspective Cautious Iteration model.
    """
    def __init__(self, args):
        """
        Creating dataset, doing dataset split, creating target and node index vectors.
        :param args: Arguments object.
        """
        self.device = torch.device("cuda:0") if torch.cuda.is_available() else torch.device("cpu")
        self.device = 'cpu'
        self.args = args
        self.macro_graph = hierarchical_graph_reader(self.args.hierarchical_graph)  # 大图
        self.dataset_generator = GraphDatasetGenerator(self.args.graphs, self.args.feature_which)
        self._setup_macro_graph()  # 大图的边 边给加好了self.macro_graph_edges
        self._create_split()  # 区分了带标签的和不带标签的 self.labled_indices, self.unlabeld_indices
        self._create_labeled_target()  # self.labeled_mask, self.labeled_target
        self._create_node_indices()  # node_indices

    def _setup_model(self):
        """
        Creating a SEAL model.
        """
        self.dataset_generator.number_of_features = self.dataset_generator.number_of_features
        self.dataset_generator.number_of_labels = self.dataset_generator.number_of_labels
        self.model = SEAL(self.args, self.dataset_generator.number_of_features,
                          self.dataset_generator.number_of_labels, self.device).to(self.device)

    def _setup_macro_graph(self):
        """
        Creating an edge list for the hierarchical graph.
        """
        self.macro_graph_edges = [[edge[0], edge[1]] for edge in self.macro_graph.edges()]
        self.macro_graph_edges = self.macro_graph_edges + [[edge[1], edge[0]] for edge in self.macro_graph.edges()]
        self.macro_graph_edges = torch.t(torch.LongTensor(self.macro_graph_edges))

    def _create_split(self):
        """
        Creating a labeled-unlabeled split.
        """
        # graph_indices = [index for index in range(len(self.dataset_generator.graphs))]
        random.seed(2)
        self.train_indices = []
        self.var_indices = []
        self.test_indices = []
        len_type = [len(i) for i in self.dataset_generator.type_ind]
        print(f"type:len: {len_type}")
        for i in self.dataset_generator.type_ind:
            random.shuffle(i)
            train_count = min(int(len(i) * 0.7), 1000)
            var_count = int(len(i) * 0.8)
            self.train_indices.extend(i[0: train_count])
            self.var_indices.extend(i[train_count: var_count])
            self.test_indices.extend(i[var_count:])
        '''
        random.shuffle(graph_indices)
        labeled_count = int(len(graph_indices) * 0.8)
        self.labeled_indices = graph_indices[0:labeled_count]  # ->参数里的label_count
        self.unlabeled_indices = graph_indices[labeled_count:]
        '''


    def _create_labeled_target(self):
        """
        Creating a mask for labeled instances and a target for them.
        """
        self.labeled_mask = torch.LongTensor([0 for node in self.macro_graph.nodes()])
        self.labeled_target = torch.LongTensor([0 for node in self.macro_graph.nodes()])
        indices = torch.LongTensor(self.train_indices)
        self.labeled_mask[indices] = 1
        indices = torch.LongTensor(self.test_indices)
        self.labeled_mask[indices] = 0
        indices = torch.LongTensor(self.var_indices)
        self.labeled_mask[indices] = 2
        self.labeled_target = self.dataset_generator.target
        dict_train = {}
        dict_var = {}
        dict_test = {}
        # temp = torch.LongTensor([0 for node in self.macro_graph.nodes()])
        t = self.labeled_target[self.labeled_mask == 1]
        print(len(t[t==0]))
        for i in range(len(self.dataset_generator.label_map)):
            t = self.labeled_target[self.labeled_mask == 1]
            dict_train[i] = len(t[t == i])
            t = self.labeled_target[self.labeled_mask == 2]
            dict_var[i] = len(t[t == i])
            t = self.labeled_target[self.labeled_mask == 0]
            dict_test[i] = len(t[t == i])
        print(f"train : {dict_train}")
        print(f"test : {dict_test}")
        print(f"var : {dict_var}")
        '''
        for i in range(len(self.labeled_target)):
            a = labeled.item()
            if i not in dict_labeled:
                dict_labeled[i] = 0
        print(f"labeled : {dict_labeled}")

        unlabeled_indices = torch.LongTensor(self.unlabeled_indices)
        self.labeled_target[unlabeled_indices] = self.dataset_generator.target[unlabeled_indices]
        dict_unlabeled = {}
        for i in self.dataset_generator.target[unlabeled_indices]:
            i = i.item()
            if i not in dict_unlabeled:
                dict_unlabeled[i] = 0
            dict_unlabeled[i] += 1
        print(f"unlabeled : {dict_unlabeled}")
        '''

    def _create_node_indices(self):
        """
        Creating an index of nodes.
        """
        self.node_indices = [index for index in range(self.macro_graph.number_of_nodes())]
        self.node_indices = torch.LongTensor(self.node_indices)

    def fit_a_single_model(self):
        """
        Fitting a single SEAL model.
        """
        self._setup_model()
        optimizer = torch.optim.Adam(self.model.parameters(),
                                     lr=self.args.learning_rate,
                                     weight_decay=self.args.weight_decay)

        for _ in range(self.args.epochs):
            optimizer.zero_grad()
            predictions, penalty = self.model(self.dataset_generator.graphs, self.macro_graph_edges)
            loss = torch.nn.functional.nll_loss(predictions[self.labeled_mask == 1],
                                                self.labeled_target[self.labeled_mask == 1])
            loss = loss + self.args.gamma*penalty
            print(f"epochs {_}*****loss: {loss} ")
            
            
            scores, prediction_indices = predictions.max(dim=1)

            correct = prediction_indices[self.labeled_mask == 1]
            correct = correct.eq(self.labeled_target[self.labeled_mask == 1]).sum().item()
            normalizer = prediction_indices[self.labeled_mask == 1].shape[0]
            accuracy = float(correct)/float(normalizer)
            print(f"accuracy for train: {accuracy}")

            correct = prediction_indices[self.labeled_mask == 2]
            correct = correct.eq(self.labeled_target[self.labeled_mask == 2]).sum().item()
            normalizer = prediction_indices[self.labeled_mask == 2].shape[0]
            accuracy = float(correct)/float(normalizer)
            print(f"accuracy for var: {accuracy}")
            loss.backward()
            optimizer.step()


    def score_a_single_model(self):
        """
        Scoring the SEAL model.
        """
        self.model.eval()
        predictions, _ = self.model(self.dataset_generator.graphs, self.macro_graph_edges)
        scores, prediction_indices = predictions.max(dim=1)
        # 打标签的图数目和没打标签的图数目
        print("train: %d" % len(self.labeled_target[self.labeled_mask == 1]))
        print("test: %d" % len(self.labeled_target[self.labeled_mask == 0]))
        print("var: %d" % len(self.labeled_target[self.labeled_mask == 2]))


        correct = prediction_indices[self.labeled_mask == 0]
        correct = correct.eq(self.labeled_target[self.labeled_mask == 0]).sum().item()
        normalizer = prediction_indices[self.labeled_mask == 0].shape[0]
        accuracy = float(correct)/float(normalizer)

        #scores_test = scores[self.labeled_mask == 0]
        #scores_test = [scores_test[i].item() for i in range(len(scores_test))]
        y_true = self.labeled_target[self.labeled_mask == 0]
        y_pred = prediction_indices[self.labeled_mask == 0]
        #print(y_true,y_pred)
        f1 = metrics.f1_score(y_true, y_pred, average='micro')
        precition = metrics.precision_score(y_true, y_pred, average='micro')
        recall = metrics.recall_score(y_true, y_pred, average='micro')
        report = pd.DataFrame(metrics.classification_report(y_true, y_pred, output_dict=True)).transpose()

        print("accuracy: %s" % accuracy)
        print("f1_score: %s" % f1)
        print("precision_score: %s" % precition)
        print("recall_score: %s" % recall)
        print(report)

        return scores, prediction_indices, accuracy, f1, precition, recall, report
            
    def _choose_best_candidate(self, predictions, indices):
        """
        Choosing the best candidate based on predictions.
        :param predictions: Scores.
        :param indices: Vector of likely labels.
        :return candidate: Node chosen.
        :return label: Label of node.
        """
        nodes = self.node_indices[self.labeled_mask == 0]
        sub_predictions = predictions[self.labeled_mask == 0]
        sub_predictions, candidate = sub_predictions.max(dim=0)
        candidate = nodes[candidate]
        label = indices[candidate]
        return candidate, label

    def _update_target(self, candidate, label):
        """
        Adding the new node to the mask and the target is updated with the predicted label.
        :param candidate: Candidate node identifier.
        :param label: Label of candidate node.
        """
        self.labeled_mask[candidate] = 1
        self.labeled_target[candidate] = label      

    def fit(self):
        """
        Training models sequentially.
        """
        print("\nTraining started.\n")
        self.fit_a_single_model()
        '''
        budget_size = trange(self.args.budget, desc='Unlabeled Accuracy: ', leave=True)
        for _ in budget_size:
           
            scores, prediction_indices, accuracy = self.score_a_single_model()
            candidate, label = self._choose_best_candidate(scores, prediction_indices)
            self._update_target(candidate, label)
            budget_size.set_description("Unlabeled Accuracy:%g" % round(accuracy, 4))
        '''
        return self.score_a_single_model()



    def score(self):
        """
        Scoring the model.
        """
        print("\nModel scoring.\n")
        scores, prediction_indices, accuracy = self.score_a_single_model()
        print("Unlabeled Accuracy:%g" % round(accuracy, 4))