1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
|
'''
Description:
Author: chenxu
Date: 2022-03-31 15:15:09
LastEditTime: 2022-09-29 10:59:11
LastEditors: yinjiangyi
'''
import datetime
import os
import re
import shutil
import pytz
import yaml
import struct
import socket
import ipaddress
import numpy as np
import pandas as pd
from clickhouse_driver import Client
'''
Description: 判断文件是否存在
Param : 文件路径
Return:
'''
def fileExists(readfilePath):
if os.path.exists(readfilePath):
return True
else:
return False
'''
Description: 读文件
Param :
Return:
param {*} readfilePath
'''
def readTxt(readfilePath):
with open(readfilePath) as file:
lines = file.readlines()
listStr = list()
for line in lines:
listStr.append("".join(line.split()))
return listStr
'''
Description: 写文件
Param :
Return:
param {*} writeFilePath
param {*} content
'''
def write(writeFilePath, content):
with open(writeFilePath, 'a') as file:
for item in content:
file.write("".join(item))
file.write('\n')
try:
pass
except BaseException as e:
pass
'''
Description: 文件内容清空
Param :
Return:
param {*} writeFilePath
'''
def clear(writeFilePath):
file = open(writeFilePath, 'w')
file.closed
def clear_dir(dir_path, git_keep=False):
shutil.rmtree(dir_path)
os.mkdir(dir_path)
if git_keep:
open(dir_path + "/.gitkeep", 'a').close()
'''
Description: 判断域名是否合法
Param : 域名
Return: 合法True,不合法False
'''
def is_valid_domain(domain):
pattern = re.compile(
r'^(([a-zA-Z]{1})|([a-zA-Z]{1}[a-zA-Z]{1})|'
r'([a-zA-Z]{1}[0-9]{1})|([0-9]{1}[a-zA-Z]{1})|'
r'([a-zA-Z0-9][-_.a-zA-Z0-9]{0,61}[a-zA-Z0-9]))\.'
r'([a-zA-Z]{2,13}|[a-zA-Z0-9-]{2,30}.[a-zA-Z]{2,3})$'
)
return True if pattern.match(domain) else False
'''
Description: 判断域名中的非域名个数
Param : 域名
Return: 非域名个数比例
'''
def isNotDomain(hostList):
isNotdomainNum = 0
for item in hostList:
item = item.split(':')[0]
if is_valid_domain(item) == False:
isNotdomainNum = isNotdomainNum + 1
if len(hostList) > 0:
return isNotdomainNum / len(hostList)
return 0
'''
Description: 判断域名中的www&>17&word>=3域名个数
Param : 域名
Return: 非域名个数比例
'''
def wwwDomain(hostList):
pattern = re.compile(r'(www)\.([a-zA-Z]{5,25})\.(com)')
cnt = 0
for item in hostList:
if is_valid_domain(item) and pattern.match(item) and len(item) >= 17:
cnt = cnt + 1
if len(hostList) > 0:
return cnt / len(hostList)
return 0
def readYaml(path):
file = open(path, encoding="utf-8")
data = yaml.safe_load(file)
file.close()
return data
"""
将列表拆分为指定长度的多个列表
:param lists: 初始列表
:param cut_len: 每个列表的长度
:return: 一个二维数组 [[x,x],[x,x]]
"""
def cut_list(lists, cut_len):
res_data = []
if len(lists) > cut_len:
for i in range(int(len(lists) / cut_len)):
cut_a = lists[cut_len * i:cut_len * (i + 1)]
res_data.append(cut_a)
last_data = lists[int(len(lists) / cut_len) * cut_len:]
if last_data:
res_data.append(last_data)
else:
res_data.append(lists)
return res_data
'''
Description: 数据库查询
Param : ip
Return: ip地理位置
'''
def queryIpDatabase(reader, ip, type):
# reader = awdb.open_database(path)
(record, prefix_len) = reader.get_with_prefix_len(ip)
if type == 'isp':
return bytes.decode(record.get('owner'))
if type == 'country':
return bytes.decode(record.get('areacode'))
'''
Description: 厂商匹配查询
Param : isp name
Return: 匹配结果
'''
def ipReputation(providerStr):
providerList = ['IONOS SE', 'M247 Ltd', 'AltusHost B.V.', 'Packet Exchange Limited', 'Orion Network Limited',
'DigitalOcean, LLC', 'Greenhost BV', 'UK-2 Limited', 'RouteLabel V.O.F.', 'InMotion Hosting, Inc.',
'ONLINE S.A.S.', 'Linode, LLC', 'Hosting Services, Inc.', 'Performive LLC']
for item in providerList:
if item in providerStr or providerStr in item:
return 1
return 0
'''
Description: 国家匹配
Param : country
Return: 匹配结果
'''
def ipCountry(Country):
if Country == 'ET':
return 1
return 0
'''
Description: 查询sip是否属于目标ISP
Param :
Return: 属于返回True,否则返回False
param {str} ip_address
'''
def queryipBlock(data, ip):
intIp = socket.ntohl(struct.unpack("I", socket.inet_aton(str(ip)))[0])
for index, row in data.iterrows():
if intIp > row['maxip'] or intIp < row['minip']:
continue
if intIp > row['minip'] and intIp < row['maxip']:
return True
return False
# '''
# Description: 根据spur结果收集ISP名称
# Param :
# Return:
# '''
# def collectIspName():
# reader = awdb.open_database('developerKits/IP_city_single_WGS84.awdb')
# spurLabel = pd.read_csv("externalTest/data/spur.csv",names=['ip','label'])
# spurVPNip = list()
# for index,row in spurLabel.iterrows():
# if row['label']!='0':
# spurVPNip.append(queryIpDatabase(reader,row['ip'],'isp'))
# print(Counter(spurVPNip))
'''
Description: 文件去重
Param :
Return:
'''
def duplicateRemoval(readDir, writeDir):
lines_seen = set()
outfile = open(writeDir, "w")
f = open(readDir, "r")
for line in f:
if line not in lines_seen:
outfile.write(line)
lines_seen.add(line)
outfile.close()
'''
Description: 判断是否是内网地址
Param :
Return:
param {*} ip
'''
def is_lan(ip):
try:
return ipaddress.ip_address(ip.strip()).is_private
except Exception as e:
return False
def getAsnList(file_path):
'''
get asn list from file
:return:
'''
asn_list = []
with open(file_path) as file:
lines = file.readlines()
for line in lines:
list_list = line.split(',')
if len(list_list) >= 1:
asn_list.extend([str(i.strip()) for i in list_list[1:]])
else:
pass
return asn_list
def getFeatureList(file_path):
features = []
with open(file_path) as file:
lines = file.readlines()
for line in lines:
features.append(line.strip())
return features
def is_valid_ip(ip_str):
try:
ipaddress.ip_address(ip_str)
return True
except ValueError:
return False
def find_invalid_ip(ip_list):
error_ip_list = []
for ip in ip_list:
if not is_valid_ip(ip):
error_ip_list.append(ip)
return error_ip_list
def filter_files_by_time_range(path, start_day, end_day, suffix='.csv'):
# 定义一个空列表,用于保存符合条件的文件路径
result = []
start_day_time = datetime.datetime.strptime(start_day, '%Y-%m-%d').date()
end_day_time = datetime.datetime.strptime(end_day, '%Y-%m-%d').date()
# 遍历目录下所有文件,并按照创建时间进行过滤
for root, dirs, files in os.walk(path):
for file in files:
# 判断文件类型是否为csv文件
if len(suffix) > 0 and file.endswith(suffix):
filepath = os.path.join(root, file)
# 获取文件创建时间
# created_time = os.path.getctime(filepath)
created_time = os.path.getatime(filepath)
# 将创建时间转换为日期格式
created_date = datetime.datetime.fromtimestamp(created_time).date()
if created_date >= start_day_time and created_date < end_day_time:
result.append(filepath)
for d in dirs:
# 对于每个子目录,递归调用该函数,并将结果列表合并
result.extend(filter_files_by_time_range(os.path.join(root, d), start_day, end_day))
return list(set(result))
def filter_files_by_created_time(path, days, suffix='.csv'):
# 定义一个空列表,用于保存符合条件的文件路径
end_day = datetime.date.today() + datetime.timedelta(days=1)
start_day = datetime.date.today() - datetime.timedelta(days=days)
return filter_files_by_time_range(path, start_day.strftime('%Y-%m-%d'), end_day.strftime('%Y-%m-%d'))
def delete_dir_by_create_time(path, days):
ds = list(os.walk(path))
delta = datetime.timedelta(days=days)
now = datetime.datetime.now()
for d in ds:
os.chdir(d[0])
if d[2]:
for x in d[2]:
ctime = datetime.datetime.fromtimestamp(os.path.getmtime(x))
if ctime < (now - delta):
os.remove(x)
os.chdir(os.path.abspath(os.path.join(os.path.dirname(__file__), "../..")))
class connectTest():
def __init__(self, config):
self.headTime = config['headTime']
self.tailTime = config['tailTime']
self.tableName = config['tableName']
self.timeZone = config['timeZone']
self.client = Client(user=config['username'], password=config['password'], host=config['host'],
port=config['port'], database=config['database'])
self.dbname = config['database']
def get_project_path():
path = os.path.join(os.getcwd())
return path.rsplit('vpn-thwarting', 1)[0] + 'vpn-thwarting'
def cal_psi(actual, predict, bins=10):
"""
Discription: 计算PSI值,并输出实际和预期占比分布曲线
:param actual: Array或series,代表真实数据,如训练集模型得分
:param predict: Array或series,代表预期数据,如测试集模型得分
:param bins: 分段数
:return:
psi: float,PSI值
psi_df:DataFrame
"""
actual_min = actual.min() # 实际中的最小概率
actual_max = actual.max() # 实际中的最大概率
binlen = (actual_max - actual_min) / bins
cuts = [actual_min + i * binlen for i in range(1, bins)] # 设定分组
cuts.insert(0, -float("inf"))
cuts.append(float("inf"))
actual_cuts = np.histogram(actual, bins=cuts) # 将actual等宽分箱
predict_cuts = np.histogram(predict, bins=cuts) # 将predict按actual的分组等宽分箱
actual_df = pd.DataFrame(actual_cuts[0], columns=['actual'])
predict_df = pd.DataFrame(predict_cuts[0], columns=['predict'])
psi_df = pd.merge(actual_df, predict_df, right_index=True, left_index=True)
psi_df['actual_rate'] = (psi_df['actual'] + 1) / psi_df['actual'].sum() # 计算占比,分子加1,防止计算PSI时分子分母为0
psi_df['predict_rate'] = (psi_df['predict'] + 1) / psi_df['predict'].sum()
psi_df['psi'] = (psi_df['actual_rate'] - psi_df['predict_rate']) * np.log(
psi_df['actual_rate'] / psi_df['predict_rate'])
psi = psi_df['psi'].sum()
return psi, psi_df
def get_file_line_count(file_path):
"""
Discription: 获取文件行数
:param file_path: 文件路径
:return: 文件行数
"""
count = 0
for index, line in enumerate(open(file_path, 'r', encoding='utf-8')):
count += 1
return count
def check_internet(timeout=3, servername='www.baidu.com'):
"""
Discription: check if the internet is connected by visit a server, timeout is 3 seconds
:return: True or False
"""
global s
try:
socket.setdefaulttimeout(timeout)
host = socket.gethostbyname(servername)
s = socket.create_connection((host, 80), 2)
s.close()
return True
except Exception as e:
return False
def get_project_path():
# 返回上上级目录
return os.path.abspath(os.path.join(os.path.dirname(__file__), "../.."))
|