diff options
| author | doufenghu <[email protected]> | 2024-08-19 18:54:33 +0800 |
|---|---|---|
| committer | doufenghu <[email protected]> | 2024-08-19 18:54:33 +0800 |
| commit | a1f2fd8385f418af0a55867e12747967e7b836f9 (patch) | |
| tree | c88fe41ff5eb62b73e6269940f726e968ab396ba /docs/processor | |
| parent | 43bc690b73d2df56cb29cea7235c650d60af82d6 (diff) | |
[docs][table processor] add table-processor and udtf description.
Diffstat (limited to 'docs/processor')
| -rw-r--r-- | docs/processor/aggregate-processor.md | 2 | ||||
| -rw-r--r-- | docs/processor/table-processor.md | 61 | ||||
| -rw-r--r-- | docs/processor/udaf.md | 180 | ||||
| -rw-r--r-- | docs/processor/udtf.md | 66 |
4 files changed, 306 insertions, 3 deletions
diff --git a/docs/processor/aggregate-processor.md b/docs/processor/aggregate-processor.md index af82d4e..5ab0ae0 100644 --- a/docs/processor/aggregate-processor.md +++ b/docs/processor/aggregate-processor.md @@ -12,7 +12,7 @@ Note:Default will output internal fields `__window_start_timestamp` and `__win | name | type | required | default value | |--------------------------|--------|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------| -| type | String | Yes | The type of the processor, now only support `com.geedgenetworks.core.processor.projection.AggregateProcessor` | +| type | String | Yes | The type of the processor, now only support `com.geedgenetworks.core.processor.aggregate.AggregateProcessor` | | output_fields | Array | No | Array of String. The list of fields that need to be kept. Fields not in the list will be removed. | | remove_fields | Array | No | Array of String. The list of fields that need to be removed. | | group_by_fields | Array | yes | Array of String. The list of fields that need to be grouped. | diff --git a/docs/processor/table-processor.md b/docs/processor/table-processor.md new file mode 100644 index 0000000..7b3066c --- /dev/null +++ b/docs/processor/table-processor.md @@ -0,0 +1,61 @@ +# Table Processor + +> Processing pipelines for table processors using UDTFs + +## Description + +Table processor is used to process the data from source to sink. It is a part of the processing pipeline. It can be used in the pre-processing, processing, and post-processing pipeline. Each processor can assemble UDTFs(User-defined Table functions) into a pipeline. Within the pipeline, events are processed by each Function in order, top‑>down. More details can be found in user-defined table functions [(UDTFs)](udtf.md). + +## Options + +| name | type | required | default value | +|-----------------|--------|----------|------------------------------------------------------------------------------------------------------| +| type | String | Yes | The type of the processor, now only support `com.geedgenetworks.core.processor.table.TableProcessor` | +| output_fields | Array | No | Array of String. The list of fields that ne ed to be kept. Fields not in the list will be removed. | +| remove_fields | Array | No | Array of String. The list of fields that need to be removed. | +| functions | Array | No | Array of Object. The list of functions that need to be applied to the data. | + +## Usage Example +This example uses a table processor to unroll the encapsulation field, converting one row into multiple rows. + +```yaml +sources: + inline_source: + type: inline + properties: + data: '[{"tcp_rtt_ms":128,"decoded_as":"HTTP","http_version":"http1","http_request_line":"GET / HTTP/1.1","http_host":"www.ct.cn","http_url":"www.ct.cn/","http_user_agent":"curl/8.0.1","http_status_code":200,"http_response_line":"HTTP/1.1 200 OK","http_response_content_type":"text/html; charset=UTF-8","http_response_latency_ms":31,"http_session_duration_ms":5451,"in_src_mac":"ba:bb:a7:3c:67:1c","in_dest_mac":"86:dd:7a:8f:ae:e2","out_src_mac":"86:dd:7a:8f:ae:e2","out_dest_mac":"ba:bb:a7:3c:67:1c","tcp_client_isn":678677906,"tcp_server_isn":1006700307,"address_type":4,"client_ip":"192.11.22.22","server_ip":"8.8.8.8","client_port":42751,"server_port":80,"in_link_id":65535,"out_link_id":65535,"start_timestamp_ms":1703646546127,"end_timestamp_ms":1703646551702,"duration_ms":5575,"sent_pkts":97,"sent_bytes":5892,"received_pkts":250,"received_bytes":333931,"encapsulation":"[{\"tunnels_schema_type\":\"MULTIPATH_ETHERNET\",\"c2s_source_mac\":\"48:73:97:96:38:27\",\"c2s_destination_mac\":\"58:b3:8f:fa:3b:11\",\"s2c_source_mac\":\"58:b3:8f:fa:3b:11\",\"s2c_destination_mac\":\"48:73:97:96:38:27\"}]"},{"tcp_rtt_ms":256,"decoded_as":"HTTP","http_version":"http1","http_request_line":"GET / HTTP/1.1","http_host":"www.abc.cn","http_url":"www.cabc.cn/","http_user_agent":"curl/8.0.1","http_status_code":200,"http_response_line":"HTTP/1.1 200 OK","http_response_content_type":"text/html; charset=UTF-8","http_response_latency_ms":31,"http_session_duration_ms":5451,"in_src_mac":"ba:bb:a7:3c:67:1c","in_dest_mac":"86:dd:7a:8f:ae:e2","out_src_mac":"86:dd:7a:8f:ae:e2","out_dest_mac":"ba:bb:a7:3c:67:1c","tcp_client_isn":678677906,"tcp_server_isn":1006700307,"address_type":4,"client_ip":"192.168.10.198","server_ip":"4.4.4.4","client_port":42751,"server_port":80,"in_link_id":65535,"out_link_id":65535,"start_timestamp_ms":1703646546127,"end_timestamp_ms":1703646551702,"duration_ms":2575,"sent_pkts":197,"sent_bytes":5892,"received_pkts":350,"received_bytes":533931,"device_tag":"{\"tags\":[{\"tag\":\"data_center\",\"value\":\"center-xxg-tsgx\"},{\"tag\":\"device_group\",\"value\":\"group-xxg-tsgx\"}]}"}]' + format: json + json.ignore.parse.errors: false + +processing_pipelines: + table_processor: + type: table + functions: + - function: JSON_UNROLL + lookup_fields: [ encapsulation] + output_fields: [ encapsulation ] + +sinks: + print_sink: + type: print + properties: + format: json + mode: log_warn + +application: + env: + name: example-inline-to-print-use-udtf + parallelism: 3 + pipeline: + object-reuse: true + topology: + - name: inline_source + downstream: [table_processor] + - name: table_processor + downstream: [ print_sink ] + - name: print_sink + downstream: [] + +``` + + diff --git a/docs/processor/udaf.md b/docs/processor/udaf.md index e22846f..dd1dd70 100644 --- a/docs/processor/udaf.md +++ b/docs/processor/udaf.md @@ -11,7 +11,11 @@ - [Long Count](#Long-Count) - [MEAN](#Mean) - [Number SUM](#Number-SUM) - +- [HLLD](#HLLD) +- [Approx Count Distinct HLLD](#Approx-Count-Distinct-HLLD) +- [HDR Histogram](#HDR-Histogram) +- [Approx Quantile HDR](#APPROX_QUANTILE_HDR) +- [Approx Quantiles HDR](#APPROX_QUANTILES_HDR) ## Description @@ -146,4 +150,176 @@ NUMBER_SUM is used to sum the value of the field in the group of events. The loo - function: NUMBER_SUM lookup_fields: [received_bytes] output_fields: [received_bytes_sum] -```
\ No newline at end of file +``` + +### HLLD +hlld is a high-performance C server which is used to expose HyperLogLog sets and operations over them to networked clients. More details can be found in [hlld](https://github.com/armon/hlld). + +```HLLD(filter, lookup_fields, output_fields[, parameters])``` +- filter: optional +- lookup_fields: required. +- output_fields: required. +- parameters: optional. + - input_type: `<String>` optional. input field type can be `regular` or `sketch`. Default is `sketch`. regular field data type includes `string`, `int`, `long`, `float`, `double` etc. + - precision: `<Integer>` optional. The precision of the hlld value. Default is 12. + - output_format: `<String>` optional. The output format can be either `base64(encoded string)` or `binary(byte[])`. The default is `base64`. + +### Example + Merge multiple string field into a HyperLogLog data structure. +```yaml + - function: HLLD + lookup_fields: [client_ip] + output_fields: [client_ip_hlld] + parameters: + input_type: regular + +``` + Merge multiple `unique_count ` metric type fields into a HyperLogLog data structure +```yaml + - function: HLLD + lookup_fields: [client_ip_hlld] + output_fields: [client_ip_hlld] + parameters: + input_type: sketch +``` + +### Approx Count Distinct HLLD +Approx Count Distinct HLLD is used to count the approximate number of distinct values in the group of events. + +```APPROX_COUNT_DISTINCT_HLLD(filter, lookup_fields, output_fields[, parameters])``` +- filter: optional +- lookup_fields: required. +- output_fields: required. +- parameters: optional. + - input_type: `<String>` optional. Refer to `HLLD` function. + - precision: `<Integer>` optional. Refer to `HLLD` function. + +### Example + +```yaml +- function: APPROX_COUNT_DISTINCT_HLLD + lookup_fields: [client_ip] + output_fields: [unique_client_ip] + parameters: + input_type: regular +``` + +```yaml +- function: APPROX_COUNT_DISTINCT_HLLD + lookup_fields: [client_ip_hlld] + output_fields: [unique_client_ip] + parameters: + input_type: sketch +``` + +### HDR Histogram + +A High Dynamic Range (HDR) Histogram. More details can be found in [HDR Histogram](https://github.com/HdrHistogram/HdrHistogram). + +```HDR_HISTOGRAM(filter, lookup_fields, output_fields[, parameters])``` +- filter: optional +- lookup_fields: required. +- output_fields: required. +- parameters: optional. + - input_type: `<String>` optional. input field type can be `regular` or `sketch`. Default is `sketch`. regular field is a number. + - lowestDiscernibleValue: `<Integer>` optional. The lowest trackable value. Default is 1. + - highestTrackableValue: `<Integer>` optional. The highest trackable value. Default is 2. + - numberOfSignificantValueDigits: `<Integer>` optional. The number of significant value digits. Default is 1. The range is 1 to 5. + - autoResize: `<Boolean>` optional. If true, the highestTrackableValue will auto-resize. Default is true. + - output_format: `<String>` optional. The output format can be either `base64(encoded string)` or `binary(byte[])`. The default is `base64`. + +### Example + + ```yaml + - function: HDR_HISTOGRAM + lookup_fields: [latency_ms] + output_fields: [latency_ms_histogram] + parameters: + input_type: regular + lowestDiscernibleValue: 1 + highestTrackableValue: 3600000 + numberOfSignificantValueDigits: 3 + ``` + ```yaml + - function: HDR_HISTOGRAM + lookup_fields: [latency_ms_histogram] + output_fields: [latency_ms_histogram] + parameters: + input_type: sketch + ``` + +### Approx Quantile HDR + +Approx Quantile HDR is used to calculate the approximate quantile value of the field in the group of events. + +```APPROX_QUANTILE_HDR(filter, lookup_fields, output_fields, quantile[, parameters])``` +- filter: optional +- lookup_fields: required. +- output_fields: required. +- parameters: optional. + - input_type: `<String>` optional. Refer to `HDR_HISTOGRAM` function. + - lowestDiscernibleValue: `<Integer>` optional. Refer to `HDR_HISTOGRAM` function. + - highestTrackableValue: `<Integer>` required. Refer to `HDR_HISTOGRAM` function. + - numberOfSignificantValueDigits: `<Integer>` optional. Refer to `HDR_HISTOGRAM` function. + - autoResize: `<Boolean>` optional. Refer to `HDR_HISTOGRAM` function. + - probability: `<Double>` optional. The probability of the quantile. Default is 0.5. + +### Example + + ```yaml + - function: APPROX_QUANTILE_HDR + lookup_fields: [latency_ms] + output_fields: [latency_ms_p95] + parameters: + input_type: regular + probability: 0.95 + ``` + + ```yaml + - function: APPROX_QUANTILE_HDR + lookup_fields: [latency_ms_HDR] + output_fields: [latency_ms_p95] + parameters: + input_type: sketch + probability: 0.95 + + ``` + +### Approx Quantiles HDR + +Approx Quantiles HDR is used to calculate the approximate quantile values of the field in the group of events. + +```APPROX_QUANTILES_HDR(filter, lookup_fields, output_fields, quantiles[, parameters])``` +- filter: optional +- lookup_fields: required. +- output_fields: required. +- parameters: optional. + - input_type: `<String>` optional. Refer to `HDR_HISTOGRAM` function. + - lowestDiscernibleValue: `<Integer>` optional. Refer to `HDR_HISTOGRAM` function. + - highestTrackableValue: `<Integer>` required. Refer to `HDR_HISTOGRAM` function. + - numberOfSignificantValueDigits: `<Integer>` optional. Refer to `HDR_HISTOGRAM` function. + - autoResize: `<Boolean>` optional. Refer to `HDR_HISTOGRAM` function. + - probabilities: `<Array<Double>>` required. The list of probabilities of the quantiles. Range is 0 to 1. + +### Example + +```yaml +- function: APPROX_QUANTILES_HDR + lookup_fields: [latency_ms] + output_fields: [latency_ms_quantiles] + parameters: + input_type: regular + probabilities: [0.5, 0.95, 0.99] +``` + +```yaml +- function: APPROX_QUANTILES_HDR + lookup_fields: [latency_ms_HDR] + output_fields: [latency_ms_quantiles] + parameters: + input_type: sketch + probabilities: [0.5, 0.95, 0.99] +``` + + + diff --git a/docs/processor/udtf.md b/docs/processor/udtf.md new file mode 100644 index 0000000..a6e8444 --- /dev/null +++ b/docs/processor/udtf.md @@ -0,0 +1,66 @@ +# UDTF + +> The functions for table processors. + +## Function of content + +- [UNROLL](#unroll) +- [JSON_UNROLL](#json_unroll) + +## Description + +The UDTFs(user-defined table functions) are used to process the data from source to sink. It is a part of the processing pipeline. It can be used in the pre-processing, processing, and post-processing pipeline. Each processor can assemble UDTFs into a pipeline. Within the pipeline, events are processed by each Function in order, top‑>down. +Unlike scalar functions, which return a single value, UDTFs are particularly useful when you need to explode or unroll data, transforming a single input row into multiple output rows. + +## UDTF Definition + + The UDTFs and UDFs share similar input and context structures, please refer to [UDF](udf.md). + +## Functions + +### UNROLL + +The Unroll Function handles an array field—or an expression evaluating to an array—and unrolls it into individual events. + +```UNROLL(filter, lookup_fields, output_fields[, parameters])``` +- filter: optional +- lookup_fields: required +- output_fields: required +- parameters: optional + - regex: `<String>` optional. If lookup_fields is a string, the regex parameter is used to split the string into an array. The default value is a comma. + +#### Example + +```yaml +functions: + - function: UNROLL + lookup_fields: [ monitor_rule_list ] + output_fields: [ monitor_rule ] +``` + +### JSON_UNROLL + +The JSON Unroll Function handles a JSON object, unrolls/explodes an array of objects therein into individual events, while also inheriting top level fields. + +```JSON_UNROLL(filter, lookup_fields, output_fields[, parameters])``` +- filter: optional +- lookup_fields: required +- output_fields: required +- parameters: optional + - path: `<String>` optional. Path to array to unroll, default is the root of the JSON object. + - new_path: `<String>` optional. Rename path to new_path, default is the same as path. + +#### Example + +```yaml +functions: + - function: JSON_UNROLL + lookup_fields: [ device_tag ] + output_fields: [ device_tag ] + parameters: + - path: tags + - new_path: tag +``` + + + |
