summaryrefslogtreecommitdiff
path: root/script/train.py
blob: 68364acb948a497025da3cd0b1a3ec0d394c6b46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
import argparse
import torch
from torch import nn, optim
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import pandas
import random
import time
import pickle
from collections import Counter

from utils import GRUModel, LSTMModel, rnn_loss_function, AEModel, ae_loss_function
from utils import read_dataset, generate_ngram_seq, generate_contextual_profile_dataset, \
    generate_contextual_profile_dataset_fused, generate_ngram_seq_dataset, calculate_acc, print_per_label_accu
from preprocess_dataset import nf_conntrack_states

ERR_TOO_SHORT_SEQ = -1


if __name__ == '__main__':
    parser = argparse.ArgumentParser(
        description='GRU for learning benign contextual profiles')
    parser.add_argument('--train-dataset', type=str,
                        help='path to dataset file')
    parser.add_argument('--loss-list-fpath', type=str,
                        help='path to dump loss list')
    parser.add_argument('--device', type=str, help='device for training')
    parser.add_argument('--seed', type=int, default=1,
                        metavar='S', help='random seed (default: 1)')
    parser.add_argument('--rnn-num-epochs', type=int, default=5,
                        help='number of epochs for RNN training (default: 5)')
    parser.add_argument('--vae-num-epochs', type=int, default=5,
                        help='number of epochs for vae training (default: 5)')
    parser.add_argument('--cutoff', type=int, default=-1,
                        help='cutoff for rnn training (default: -1)')
    parser.add_argument('--ae-batch-size', type=int, default=128,
                        help='AE batch size for AE training (default: 128)')
    parser.add_argument('--input-size', type=int,
                        help='Raw input size (no default)')
    # NOTE: Not sure how to make the batch size for training RNN larger than 1
    parser.add_argument('--rnn-batch-size', type=int, default=1,
                        help='batch size for RNN training (default: 1)')
    parser.add_argument('--rnn-hidden-size', type=int, default=5,
                        help='hidden state size for RNN (default: 5)')
    parser.add_argument('--ae-bottleneck-size', type=int, default=5,
                        help='bottleneck size for AE (default: 5)')
    parser.add_argument('--n-gram', type=int, default=3,
                        help='n-gram for training/testing the autoencoder (default: 3)')
    parser.add_argument('--train-seq-cutoff', type=int, default=-1,
                        help='seq cutoff for training phase (default: -1)')
    parser.add_argument('--rnn-train-checkpoint', type=int, default=100000,
                        help='how many samples to perform a testing (default: 5000)')
    parser.add_argument('--ae-train-checkpoint', type=int, default=10000,
                        help='how many samples to perform a testing (default: 5000)')
    parser.add_argument('--error-thres', type=float,
                        help='reconstruction error for autoencoder')
    parser.add_argument('--debug', action="store_true",
                        help='enables debugging information')
    parser.add_argument('--train-ae-model', action="store_true",
                        help='whether to train AE model')
    parser.add_argument('--save-model', action="store_true",
                        help='persists the models for future use')
    parser.add_argument('--loss-weighting', type=str, default="none",
                        help='weights the loss w.r.t. different labels')
    parser.add_argument('--context-mode', type=str, default="use_gates",
                        help='type of contextual profile to use')
    parser.add_argument('--ae-model-type', type=str,
                        default="mid", help='type of AE model to use')
    parser.add_argument('--partition-mode', type=str,
                        default="none", help='type of partitioning to use')
    parser.add_argument('--rnn-model', type=str, help='loads AE model')
    parser.add_argument('--save-model-suffix', type=str,
                        help='for marking saved models')
    parser.add_argument('--test-dataset', type=str,
                        help='path to dataset file')
    parser.add_argument('--rnn-num-layers', type=int, default=1,
                        help='number of GRU stacked layers (default=3)')
    parser.add_argument('--rnn-model-type', type=str,
                        default="gru", help='which RNN model to use.')
    parser.add_argument('--extra-features', type=str,
                        help='whwther to include post-mortem features.')
    parser.add_argument('--conn-dir', type=str,
                        help='which direction to build contextual profile.')
    args = parser.parse_args()

    print("[INFO][Train] All arguments:")
    print(str(args))

    torch.manual_seed(args.seed)

    device = torch.device(args.device if args.device else "cpu")

    if args.loss_weighting == 'weighted':
        use_loss_weights = True
    else:
        use_loss_weights = False

    train_loader, train_state_map, stats, label_count = read_dataset(
        args.train_dataset, batch_size=args.rnn_batch_size, preprocess=True, cutoff=args.cutoff, seq_cutoff=args.train_seq_cutoff, split_train_test=False)
    if args.test_dataset:
        test_loader, test_state_map, _, test_label_count = read_dataset(
            args.test_dataset, batch_size=1, preprocess=True, cutoff=args.cutoff, seq_cutoff=args.train_seq_cutoff, split_train_test=False, stats=stats)

    if len(train_state_map) < len(test_state_map):
        print("[ERROR] Different numbers of classes:")
        print(str(train_state_map))
        print(str(label_count))
        print(str(test_state_map))
        print(str(test_label_count))
        exit()

    loss_weights = [0.0] * (int(max(list(label_count.keys()))) + 1)
    for label_id, count in label_count.items():
        loss_weights[int(label_id)] = 1.0 / count
    stats_dump = {"label_map": train_state_map,
                  "stats": stats, "loss_weights": loss_weights}
    loss_weights = torch.FloatTensor(loss_weights).to(device)
    reversed_train_state_map = {}
    for label, label_id in train_state_map.items():
        reversed_train_state_map[label_id] = label
    train_state_map = reversed_train_state_map
    print("[INFO] Stats used for the dataset")
    print(stats_dump)
    with open(args.train_dataset + '.stats', 'wb') as fout:
        pickle.dump(stats_dump, fout)

    input_size = args.input_size
    hidden_size = args.rnn_hidden_size
    num_class = len(train_state_map)
    output_size = num_class
    batch_size = 1
    num_layers = args.rnn_num_layers
    if 'bi_' in args.rnn_model_type:
        rnn_bidirectional = True
    else:
        rnn_bidirectional = False

    if not args.rnn_model:
        if args.rnn_model_type == 'test_lstm':
            rnn_model = BiLSTMTestModel(
                input_size, hidden_size, num_layers, num_class, device).to(device)
        elif 'gru' in args.rnn_model_type:
            rnn_model = GRUModel(input_size, hidden_size, output_size,
                                 num_layers, device, rnn_bidirectional).to(device)
        elif 'lstm' in args.rnn_model_type:
            rnn_model = LSTMModel(input_size, hidden_size, output_size,
                                  num_layers, device, rnn_bidirectional).to(device)
        rnn_learning_rate = 1e-4
        rnn_optimizer = torch.optim.Adam(
            rnn_model.parameters(), lr=rnn_learning_rate)

        for epoch in range(args.rnn_num_epochs):
            print("[INFO][Train] ============ Epoch: %d ============" % epoch)
            train_average_loss = 0.0
            for batch_idx, [x, labels] in enumerate(train_loader):
                x = x.to(device, dtype=torch.float)
                labels = labels.to(
                    device, dtype=torch.long).view(labels.size(1))

                rnn_optimizer.zero_grad()

                if args.rnn_model_type == 'test_lstm':
                    outputs = rnn_model(x)
                elif 'gru' in args.rnn_model_type:
                    outputs, _, _ = rnn_model(x)
                elif 'lstm' in args.rnn_model_type:
                    outputs, _, _ = rnn_model(x)
                outputs = outputs.view(x.size(1), num_class)
                if use_loss_weights:
                    loss = rnn_loss_function(
                        outputs, labels, weight=loss_weights)
                else:
                    loss = rnn_loss_function(outputs, labels)
                train_average_loss += loss.item()

                loss.backward()
                rnn_optimizer.step()

                if (batch_idx > 0 and batch_idx % args.rnn_train_checkpoint == 0) or batch_idx == len(train_loader) - 1:
                    print("[INFO][Train] Sample idx: %d; Training loss: %f" %
                          (batch_idx, train_average_loss / (batch_idx + 1)))

                    if not args.test_dataset:
                        continue

                    rnn_model.eval()  # Setting model to eval model to disable Dropout layers
                    correct, total = 0, 0
                    test_average_loss = 0.0
                    correct_labels, incorrect_labels = [], []
                    for test_idx, [test_x, test_labels] in enumerate(test_loader):
                        test_x = test_x.to(device, dtype=torch.float)
                        test_labels = test_labels.to(
                            device, dtype=torch.long).view(test_labels.size(1))
                        test_x_size = test_labels.size(0)

                        if args.rnn_model_type == 'test_lstm':
                            test_outputs = rnn_model(test_x)
                        elif 'gru' in args.rnn_model_type:
                            test_outputs, _, _ = rnn_model(test_x)
                        elif 'lstm' in args.rnn_model_type:
                            test_outputs, _, _ = rnn_model(test_x)
                        test_outputs = test_outputs.view(
                            test_x.size(1), num_class)
                        if use_loss_weights:
                            test_loss = rnn_loss_function(
                                test_outputs, test_labels, weight=loss_weights)
                        else:
                            test_loss = rnn_loss_function(
                                test_outputs, test_labels)
                        test_average_loss += test_loss.item()

                        curr_correct, curr_total, corr_labels, incorr_labels = calculate_acc(
                            test_outputs, test_labels)
                        correct_labels.extend(corr_labels.tolist())
                        incorrect_labels.extend(incorr_labels.tolist())
                        total += curr_total
                        correct += curr_correct

                    _ = print_per_label_accu(Counter(correct_labels), Counter(
                        incorrect_labels), test_state_map)
                    test_average_loss /= len(test_loader)
                    accuracy = float(correct) / total

                    print('[INFO][Test] Testing loss: {}. Overall testing accuracy: {}'.format(
                        test_average_loss, accuracy))
                    rnn_model.train()  # Now returning to train model
    else:
        rnn_model = torch.load(args.rnn_model).to(device)

    if args.save_model and not args.rnn_model:
        if args.save_model_suffix:
            torch.save(rnn_model, "../model/rnn_model.pt.%s" %
                       args.save_model_suffix)
        else:
            torch.save(rnn_model, "../model/rnn_model.pt.%s" %
                       str(int(time.time())))

    if not args.train_ae_model:
        exit()

    # Reload the training set if we need to include additional features
    if args.conn_dir == 'only_outbound':
        only_outbound = True
    else:
        only_outbound = False
    rnn_model.eval()  # switching to eval mode
    if args.extra_features == 'all_addi':
        addi_train_loader, _, _, _ = read_dataset(args.train_dataset, batch_size=args.rnn_batch_size, preprocess=True,
                                                  cutoff=args.cutoff, seq_cutoff=args.train_seq_cutoff, split_train_test=False, add_additional_features=True)#tiaozheng false
        contextual_dataset = generate_contextual_profile_dataset_fused(train_loader, device, rnn_model, context_mode=args.context_mode,
                                                                       partition_mode=args.partition_mode, rnn_model_type=args.rnn_model_type, label_map=train_state_map, addi_data_loader=addi_train_loader)
        num_addi_features = 15
    else:
        # Now is the time to save final contextual profile
        contextual_dataset = generate_contextual_profile_dataset(
            train_loader, device, rnn_model, context_mode=args.context_mode, partition_mode=args.partition_mode, rnn_model_type=args.rnn_model_type, label_map=train_state_map)
        num_addi_features = 0

    if args.context_mode == "baseline":
        vae_input_size = (input_size + num_addi_features) * args.n_gram
    elif args.context_mode == "use_hn":
        vae_input_size = (input_size + hidden_size) * args.n_gram
    elif args.context_mode == "use_all":
        vae_input_size = (input_size + hidden_size * 5) * args.n_gram
    elif args.context_mode == "only_gates":
        vae_input_size = (hidden_size * 2) * args.n_gram
    elif args.context_mode == "only_hn":
        vae_input_size = hidden_size * args.n_gram
    elif args.context_mode == "use_all_gates":
        vae_input_size = (input_size + hidden_size * 4) * args.n_gram
    elif args.context_mode == "use_gates":
        vae_input_size = (input_size + num_addi_features +
                          hidden_size * 2) * args.n_gram
    elif args.context_mode == "use_gates_label":
        vae_input_size = (input_size + num_addi_features + hidden_size *
                          2 + len(nf_conntrack_states) + 1) * args.n_gram
    print("[INFO][Train] AE input size: %d" % vae_input_size)

    vae_learning_rate = 1e-3
    if args.partition_mode == 'none':
        vae_model = AEModel(
            vae_input_size, args.ae_bottleneck_size, args.ae_model_type).to(device)
        vae_optimizer = optim.Adam(
            vae_model.parameters(), lr=vae_learning_rate)
    else:
        vae_models = {}
        vae_optimizers = {}
        for label in list(contextual_dataset.keys()):
            vae_models[label] = AEModel(
                vae_input_size, args.ae_bottleneck_size, args.ae_model_type).to(device)
            vae_optimizers[label] = optim.Adam(
                vae_models[label].parameters(), lr=vae_learning_rate)

    if args.partition_mode == 'none':
        profile_loader = torch.utils.data.DataLoader(
            contextual_dataset, batch_size=args.rnn_batch_size, shuffle=True)
        seq_profile_loader = generate_ngram_seq_dataset(
            profile_loader, args.n_gram, batch_size=args.ae_batch_size, debug=False, only_outbound=only_outbound)
    else:
        profile_loaders = {}
        for label, dataset in contextual_dataset.items():
            profile_loaders[label] = torch.utils.data.DataLoader(
                contextual_dataset[label], batch_size=args.ae_batch_size, shuffle=True)

    for epoch in range(args.vae_num_epochs):
        if args.partition_mode == "none":  # Partitioning is off
            train_loss = 0.0
            seq_cnt = 0
            for batch_idx, ngram in enumerate(seq_profile_loader):
                ngram = ngram.view(-1, vae_input_size)
                vae_optimizer.zero_grad()
                recon_ngram = vae_model(ngram)
                loss = ae_loss_function(ngram, recon_ngram)
                loss.backward()
                train_loss += loss.item()
                vae_optimizer.step()
                if (batch_idx != 0 and batch_idx % args.ae_train_checkpoint == 0) or batch_idx == len(seq_profile_loader) - 1:
                    print("[INFO][Train] Training checkpoint: batch #%d" %
                          batch_idx)
                    print('[INFO] ====> Epoch: {}; Average loss: {:.4f}'.format(
                        epoch, train_loss/(batch_idx+1)))
        else:  # Partitioning is on
            train_loss = {}
            for label, label_profile_loader in profile_loaders.items():
                train_loss[label] = 0.0
                for batch_idx, profile in enumerate(label_profile_loader):
                    profile = profile.view(-1, vae_input_size)
                    vae_optimizers[label].zero_grad()
                    recon_profile = vae_models[label](profile)
                    loss = ae_loss_function(profile, recon_profile)
                    loss.backward()
                    train_loss[label] += loss.item()
                    vae_optimizers[label].step()
                    if (batch_idx != 0 and batch_idx % args.ae_train_checkpoint == 0) or batch_idx == len(profile_loaders[label]) - 1:
                        print(
                            "[INFO][Train] Training checkpoint: batch #%d" % batch_idx)
                        print('[INFO] ====> [Label: %s] Epoch: %d; Average loss: %f' % (
                            reversed_train_state_map[label], epoch, train_loss[label]/(batch_idx+1)))

    if args.save_model:
        if args.partition_mode == 'none':
            if args.save_model_suffix:
                torch.save(vae_model, "../model/vae_model.pt.%s" %
                           args.save_model_suffix)
            else:
                torch.save(vae_model, "../model/vae_model.pt.%s" %
                           str(int(time.time())))
        else:
            for label, vae_model in vae_models.items():
                if args.save_model_suffix:
                    torch.save(vae_model, "../model/vae_model.pt.%s.%s" %
                               (args.save_model_suffix, str(reversed_train_state_map[label])))
                else:
                    torch.save(vae_model, "../model/vae_model.pt.%s.%s" %
                               (str(int(time.time())), str(reversed_train_state_map[label])))