1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
from utils import nf_conntrack_states
from utils import get_losslist
from utils import read_dataset, generate_ngram_seq, generate_contextual_profile_dataset, generate_contextual_profile_dataset_fused
from utils import AEModel, GRUModel, GRUCell
import argparse
import torch
from torch import nn, optim
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import pandas
import random
import time
import pickle
from os import path
import matplotlib.pyplot as plt
import matplotlib
font = {'family': 'normal',
'weight': 'bold',
'size': 16}
matplotlib.rc('font', **font)
ERR_TOO_SHORT_SEQ = -1
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='GRU for learning benign contextual profiles')
parser.add_argument('--attack-dataset', type=str,
help='path to positive dataset file')
parser.add_argument('--benign-dataset', type=str,
help='path to negative dataset file')
parser.add_argument('--dataset-stats', type=str, help='path to stats file')
parser.add_argument('--loss-list-fpath', type=str,
help='path to dump loss list')
parser.add_argument('--rnn-model', type=str, help='path to RNN model file')
parser.add_argument('--vae-model', type=str, help='path to VAE model file')
parser.add_argument('--rnn-hidden-size', type=int,
help='hidden state size')
parser.add_argument('--input-size', type=int, help='size of RNN input')
parser.add_argument('--device', type=str, help='device for training')
parser.add_argument('--seed', type=int, default=1,
metavar='S', help='random seed (default: 1)')
parser.add_argument('--batch-size', type=int, default=1,
help='batch size for training and testing')
parser.add_argument('--cutoff', type=int, default=-1,
help='cutoff for rnn training (default: -1)')
parser.add_argument('--error-thres', type=float,
help='threshold of reconstruction error')
parser.add_argument('--n-gram', type=int, default=3,
help='n-gram for training/testing the autoencoder (default: 3)')
parser.add_argument('--debug', action="store_true",
help='enables debugging information')
parser.add_argument('--context-mode', type=str,
default='use_gates', help='type of profile')
parser.add_argument('--partition-mode', type=str,
default='none', help='type of partitioning')
parser.add_argument('--rnn-model-type', type=str,
default='gru', help='type of partitioning')
parser.add_argument('--extra-features', type=str,
help='whether to include post-mortem features.')
parser.add_argument('--conn-dir', type=str,
help='direction of connection to play with.')
parser.add_argument('--use-conn-id', action='store_true', default=True,
help='use connection ids to track adv pkts.')
parser.add_argument('--paint-trend', action='store_true', default=False)
args = parser.parse_args()
if args.seed:
torch.manual_seed(args.seed)
random.seed(int(args.seed))
device = torch.device(args.device if args.device else "cpu")
with open(args.dataset_stats, 'rb') as fin:
stats_info = pickle.load(fin)
print("[INFO] Stats used for dataset:")
print(stats_info)
stats = stats_info['stats']
label_map = stats_info['label_map']
reversed_label_map = {}
for label, label_id in label_map.items():
reversed_label_map[label_id] = label
attack_test_loader, _, _, cnt_map = read_dataset(
args.attack_dataset, batch_size=args.batch_size, preprocess=True, cutoff=args.cutoff, split_train_test=False, stats=stats, debug=True)
benign_test_loader, _, _, _ = read_dataset(
args.benign_dataset, batch_size=args.batch_size, preprocess=True, cutoff=args.cutoff, split_train_test=False, stats=stats, debug=True)
start_timestamp = time.time()
print("[INFO] Stating timing: %f" % start_timestamp)
if args.extra_features == 'all_addi':
addi_attack_test_loader, _, _, _ = read_dataset(
args.attack_dataset, batch_size=args.batch_size, preprocess=True, cutoff=args.cutoff, split_train_test=False, stats=stats, debug=True, add_additional_features=True, use_conn_id=args.use_conn_id)
addi_benign_test_loader, _, _, _ = read_dataset(
args.benign_dataset, batch_size=args.batch_size, preprocess=True, cutoff=args.cutoff, split_train_test=False, stats=stats, debug=True, add_additional_features=True, use_conn_id=args.use_conn_id)
else:#xiugai
addi_attack_test_loader, _, _, _ = read_dataset(
args.attack_dataset, batch_size=args.batch_size, preprocess=True, cutoff=args.cutoff, split_train_test=False, stats=stats, debug=True, add_additional_features=False, use_conn_id=args.use_conn_id)
addi_benign_test_loader, _, _, _ = read_dataset(
args.benign_dataset, batch_size=args.batch_size, preprocess=True, cutoff=args.cutoff, split_train_test=False, stats=stats, debug=True, add_additional_features=False, use_conn_id=args.use_conn_id)
input_size = args.input_size
hidden_size = args.rnn_hidden_size
batch_size = 1
if 'bi_' in args.rnn_model_type:
rnn_bidirectional = True
else:
rnn_bidirectional = False
rnn_model = torch.load(args.rnn_model)
rnn_model.eval() # Setting to eval model since this is testing phase...
if args.conn_dir == 'only_outbound':
only_outbound = True
else:
only_outbound = False
if args.extra_features == 'all_addi':
start_feature_ext_ts = time.time()
attack_contextual_dataset = generate_contextual_profile_dataset_fused(
attack_test_loader, device, rnn_model, context_mode=args.context_mode, partition_mode=args.partition_mode, rnn_model_type=args.rnn_model_type, label_map=reversed_label_map, addi_data_loader=addi_attack_test_loader)
finish_feature_ext_ts = time.time()
benign_contextual_dataset = generate_contextual_profile_dataset_fused(
benign_test_loader, device, rnn_model, context_mode=args.context_mode, partition_mode=args.partition_mode, rnn_model_type=args.rnn_model_type, label_map=reversed_label_map, addi_data_loader=addi_benign_test_loader)
num_addi_features = 15
else:
#xiugai huancheng fused
start_feature_ext_ts = time.time()
attack_contextual_dataset = generate_contextual_profile_dataset_fused(
attack_test_loader, device, rnn_model, context_mode=args.context_mode, partition_mode=args.partition_mode, rnn_model_type=args.rnn_model_type, label_map=reversed_label_map,addi_data_loader=addi_attack_test_loader)
finish_feature_ext_ts = time.time()
benign_contextual_dataset = generate_contextual_profile_dataset_fused(
benign_test_loader, device, rnn_model, context_mode=args.context_mode, partition_mode=args.partition_mode, rnn_model_type=args.rnn_model_type, label_map=reversed_label_map,addi_data_loader=addi_benign_test_loader)
num_addi_features = 0
if args.context_mode == "baseline":
vae_input_size = (input_size + num_addi_features) * args.n_gram
elif args.context_mode == "use_hn":
vae_input_size = (input_size + hidden_size) * args.n_gram
elif args.context_mode == "use_all":
vae_input_size = (input_size + hidden_size * 5) * args.n_gram
elif args.context_mode == "only_gates":
vae_input_size = (hidden_size * 2) * args.n_gram
elif args.context_mode == "only_hn":
vae_input_size = hidden_size * args.n_gram
elif args.context_mode == "use_all_gates":
vae_input_size = (input_size + hidden_size * 4) * args.n_gram
elif args.context_mode == "use_gates":
vae_input_size = (input_size + num_addi_features +
hidden_size * 2) * args.n_gram
elif args.context_mode == "use_gates_label":
vae_input_size = (input_size + num_addi_features + hidden_size *
2 + len(nf_conntrack_states) + 1) * args.n_gram
if args.partition_mode == 'none':
vae_model = torch.load(args.vae_model)
else:
vae_model = {}
new_label_map = {}
for label, label_id in label_map.items():
model_fpath = "%s.%s" % (
args.vae_model, str(reversed_label_map[label_id]))
if path.isfile(model_fpath):
vae_model[label] = torch.load(model_fpath)
new_label_map[label_id] = label
else:
print("[ERROR] Model file %s not found" % model_fpath)
label_map = new_label_map
if args.partition_mode == "none":
attack_profile_loader = torch.utils.data.DataLoader(
attack_contextual_dataset, batch_size=batch_size, shuffle=False)
benign_profile_loader = torch.utils.data.DataLoader(
benign_contextual_dataset, batch_size=batch_size, shuffle=False)
else:
attack_profile_loader, benign_profile_loader = {}, {}
for label_id, label in label_map.items():
if label_id in attack_contextual_dataset:
attack_profile_loader[label] = torch.utils.data.DataLoader(
attack_contextual_dataset[label_id], batch_size=batch_size, shuffle=False)
if label_id in benign_contextual_dataset:
benign_profile_loader[label] = torch.utils.data.DataLoader(
benign_contextual_dataset[label_id], batch_size=batch_size, shuffle=False)
if args.partition_mode == "none":
start_loss_ts = time.time()
attack_cnt, attack_seq_cnt, attack_test_loss, attack_seq_test_loss, attack_loss_list, attack_seq_loss_list, attack_x, attack_y = get_losslist(
attack_profile_loader, vae_model, vae_input_size, args.n_gram, debug=args.debug, only_outbound=only_outbound, use_conn_id=args.use_conn_id)
finish_loss_ts = time.time()
benign_cnt, benign_seq_cnt, benign_test_loss, benign_seq_test_loss, benign_loss_list, benign_seq_loss_list, benign_x, benign_y = get_losslist(
benign_profile_loader, vae_model, vae_input_size, args.n_gram, debug=args.debug, only_outbound=only_outbound, use_conn_id=args.use_conn_id)
if args.paint_trend:
for conn_id in attack_x.keys() & benign_x.keys():
attk_x, attk_y = attack_x[conn_id], attack_y[conn_id]
begn_x, begn_y = benign_x[conn_id], benign_y[conn_id]
plt.plot(attk_x, attk_y, color='red', linewidth=3,
label='Adversarial')
plt.plot(begn_x, begn_y, color='green',
linewidth=3, label='Benign')
plt.ylim((0.0, 0.06))
plt.xlim((0, 60))
plt.xlabel("Index # of Context Profile",
fontsize=20, fontweight='bold')
plt.ylabel("Recounstruction Error",
fontsize=20, fontweight='bold')
plt.legend(loc='upper right')
plt.tight_layout()
plt.show()
else:
attack_cnt, attack_test_loss, attack_loss_list = get_losslist(
attack_profile_loader, vae_model, vae_input_size, args.n_gram, debug=args.debug, only_outbound=only_outbound)
benign_cnt, benign_test_loss, benign_loss_list = get_losslist(
benign_profile_loader, vae_model, vae_input_size, args.n_gram, debug=args.debug, only_outbound=only_outbound)
end_timestamp = time.time()
print("[INFO] Ending timing: %f" % end_timestamp)
duration = end_timestamp - start_timestamp
feature_ext_duration = finish_feature_ext_ts - start_feature_ext_ts
loss_duration = finish_loss_ts - start_loss_ts
pkt_cnt = sum(list(cnt_map.values()))
conn_cnt = len(attack_test_loader)
print("[INFO] Total # of connections: %d; # of packets: %d; total elapsed time: %f; time for feature extraction: %f; time for computing loss: %f" % (
conn_cnt, pkt_cnt, duration, feature_ext_duration, loss_duration))
print("[INFO] Averge processing time per packet: %f" %
((feature_ext_duration + loss_duration) / pkt_cnt))
print("[INFO] Averge processing time per connection: %f" %
((feature_ext_duration + loss_duration) / conn_cnt))
if args.partition_mode == "none":
with open(args.loss_list_fpath + '.UNILABEL', 'w') as fin:
for (loss, idx, conn_id, leng) in attack_loss_list:
fin.write(
'\t'.join([str(loss), str(idx), str(conn_id), str(leng), '1']) + '\n')
for (loss, idx, _, leng) in benign_loss_list:
fin.write(
'\t'.join([str(loss), str(idx), str(leng), '0']) + '\n')
else:
losslist_files = {}
for _, label in label_map.items():
losslist_files[label] = open(
'%s.%s' % (args.loss_list_fpath, label), 'w')
for label, loss_list in attack_loss_list.items():
for (loss, idx) in loss_list:
losslist_files[label].write("%f,%s,%s\n" % (loss, idx, '1'))
for label, loss_list in benign_loss_list.items():
for (loss, idx) in loss_list:
losslist_files[label].write("%f,%s,%s\n" % (loss, idx, '0'))
for label, f in losslist_files.items():
f.close()
if args.partition_mode == "none":
print("Number of connections: %d | %d" % (attack_cnt, benign_cnt))
print("Number of sequences: %d | %d" %
(attack_seq_cnt, benign_seq_cnt))
print('Per-connection average loss: {:.4f} | {:.4f}'.format(
attack_test_loss/attack_cnt, benign_test_loss/benign_cnt))
print('Per-seq average loss: {:.4f} | {:.4f}'.format(
attack_seq_test_loss/attack_seq_cnt, benign_seq_test_loss/benign_seq_cnt))
else:
for label, _ in attack_loss_list.items():
print("----- Label %s -----" % label)
print("Number of connections: %d | %d" %
(attack_cnt[label], benign_cnt[label]))
print('Per-connection average loss: {:.4f} | {:.4f}'.format(
attack_test_loss[label]/attack_cnt[label], benign_test_loss[label]/benign_cnt[label]))
|