1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
|
import re
import ConfigParser
import bisect
import random
import ctypes
import hashlib
import zlib
import binascii
term = {'td_len':(lambda x : len(x)==32),
'data_num':(lambda x : len(x)==4),
'url':(lambda x : x.find['NUll']),
'sfh_len':(lambda x : len(x)>20),
'not_null':(lambda x : len(x)!=0)}
class data_line(object):
"""docstring for ClassName"""
def __init__(self):
super(ClassName, self).__init__()
@staticmethod
def if_error(data_line_str):
data_line_val = re.split(r';',data_line_str)
hashed_len = sfh_fingerprint.get_hashed_len(data_line_val[19])
if(term['data_num'](data_line_val) and term['sfh_len'](data_line_val[19]) and term['td_len'](data_line_val[9])\
and term['td_len'](data_line_val[2]) and term['td_len'](data_line_val[13]) and term['td_len'](data_line_val[15])\
and term['td_len'](data_line_val[17]) and term['not_null'](data_line_val[18]) and term['not_null'](data_line_val[19])\
and hashed_len/float(data_line_val[3])>0.8):
return data_line_val
else:
return -1
class feature_statistics(object):
"""YSP feature_statistics"""
def __init__(self):
super(feature_statistics, self).__init__()
self.meida_len_statistics_set = [0,0,0,0,0,0,0]
self.lost_dict = dict()
def meida_len_statistics(meida_len):
j = bisect.bisect(breakpoints,meida_len)
self.meida_len_statistics_set[j-1]+=1
def data_value_statistics(data_value_dic,data_value):
data_value_str = str()
for x in xrange(0,len(feature_list)):
data_value_str = data_value_str+str(data_value_dic[feature_list[x]])+','
if(self.lost_dict.has_key(data_value_str)==False):
self.lost_dict[data_value_str]=[0,1,0.]
else:
if (int(result[3])==1):
self.lost_dict[data_value_str][0] += 1
self.lost_dict[data_value_str][1] += 1
else:
self.lost_dict[data_value_str][1] += 1
class sfh_fingerprint(object):
def __init__(self,sfh):
self.sfh = sfh
@staticmethod
def get_hashed_len(sfh):
p = r"\[+\d+?:+\d+?\]"
pattern = re.compile(p)
hashed_len_set = pattern.findall(sfh)
if (term['not_null'](hashed_len_set)):
hashed_len = 0
for x in xrange(0,len(hashed_len_set)):
hashed_len_num = re.split(r"\[|\]|:",hashed_len_set[x])
hashed_len = hashed_len + int(hashed_len_num[2]) - int(hashed_len_num[1])
return hashed_len/len(hashed_len_set)
else :
return -1
@staticmethod
def get_base_sfh(data_set):
base_sfh = list()
for x in xrange(0,10):
base_sfh.append(data_set[x])
return base_sfh
class data_value(object):
@staticmethod
def get_data_values(data):
data_set = re.split(r"URL:|ServerIP:|MediaType:|MediaLen:|Etag:|LastModify:",data)
#data_set[0]=null,data_set[1]=url
data_value_dic = dict()
for x in xrange(1,len(feature_list)+1):
if(x==1):
data_value_dic[feature_list[x-1]] = 0 if(term['not_null']==False) else 1
elif(x==2):
data_value_dic[feature_list[x-1]] = 0 if(term['not_null']==False) else 1
elif(x==3):
data_value_dic[feature_list[x-1]] = data_set[x]
elif(x==4):
data_value_dic[feature_list[x-1]] = bisect.bisect(breakpoints,int(data_set[x]))
elif(x==5):
data_value_dic[feature_list[x-1]] = 0 if(term['not_null']==False) else 1
elif(x==6):
data_value_dic[feature_list[x-1]] = 0 if(term['not_null']==False) else 1
return data_value_dic
config = ConfigParser.RawConfigParser()
config.read("feature_statistics.conf")
feature_statistics_type = ("feature","type")
raw_file_address = config.get("file","raw_file_address")
ripe_file_address = config.get("file","ripe_file_address")
if(feature_statistics_type=="meida_len_statistics"):
breakpoints = [int(i) for i in config.get("output","breakpoints").split(",")]
elif(feature_statistics_type=="data_value_statistics"):
feature_list =[i for i in config.get("feature","feature_name").split(",")]
# ll=ctypes.cdll.LoadLibrary
# lib = ll("libmaatframe.so")
i=0
sfh_set = list()
statistic = feature_statistics()
with open(raw_file_address,'r') as infile:
for line in infile:
i+=1
line_return = data_line.if_error(line)
if(line_return != -1):
if(feature_statistics_type=="meida_len_statistics"):
statistic.meida_len_statistics(line_return[3])
elif(feature_statistics_type=="data_value_statistics"):
lost_list = list()
statistic.meida_len_statistics(line_return)
for i in statistic.lost:
(statistic.lost[i])[2] = float((statistic.lost[i])[0])/(statistic.lost[i])[1]
tmp = (i,int((statistic.lost[i])[0]),int((statistic.lost[i])[1]),float((statistic.lost[i])[2]))
lost_list.append(tmp)
print sorted(lost_list,cmp=lambda x,y:cmp(x[2],y[2]))
# if(x == len(feature_list)-1):
# outfile.write(data_value_dic[feature_list[x]]+'\n')
# else:
# print lost
# outfile.write(str(data_value_dic[feature_list[x]])+',')
# outfile.write(result[3])
# sfh_dot=list()
# for x in xrange(0,10):
# #transform sfh to dot
# sfh_dot.append(lib.GIE_sfh_similiarity(result[19],len(result[19]),sfh_set[x],len(sfh_set[x])))
# if(len(data_set)==7):
# outfile.write(str(data_set[0])+','+str(data_set[1])+','+str(data_set[2])\
# +','+str(data_set[3])+','+str(data_set[4])+','+str(data_set[5])+','+result[5]\
# +','+result[7]+','+result[9]+','+result[11]+','+result[13]+','+result[15]+result[17]\
# +','+result[19]+'\n')
# with open(ripe_file_address,'w') as outfile:
# outfile.write(str(lost))
|