summaryrefslogtreecommitdiff
path: root/service/src/node_eth_ingress.c
blob: 530d41c74e356d23668ab1c21402f95f2f1ea0d0 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
#include <cJSON.h>
#include <rte_graph.h>
#include <rte_graph_worker.h>

#include <adapter_define.h>
#include <port_adapter_mapping.h>
#include <sc_node.h>
#include <sc_node_common.h>
#include <sc_trace.h>

#define MR_ETH_INGRESS_BFD_PORT 3784

/* Eth ingress next node */
enum
{
    ETH_INGRESS_NEXT_EF_INGRESS = 0,
    ETH_INGRESS_NEXT_BRIDGE,
    ETH_INGRESS_NEXT_BFD,
    ETH_INGRESS_NEXT_VWIRE_INGRESS,
    ETH_INGRESS_NEXT_TERA_INGRESS,
    ETH_INGRESS_NEXT_FORWARDER,
    ETH_INGRESS_NEXT_HEALTH_CHECK,
    ETH_INGRESS_NEXT_ETH_EGRESS,
    ETH_INGRESS_NEXT_PKT_DROP,
    ETH_INGRESS_NEXT_MAX,
};

/* Eth ingress drop reason */
enum eth_ingress_drop_reason
{
    ETH_INGR_DROP_RSN_INVALID_ROLE_TYPE = 0,
    ETH_INGR_DROP_RSN_INVALID_LAYERS,
    ETH_INGR_DROP_RSN_INVALID_ICMP_TYPE,
    ETH_INGR_DROP_RSN_INVALID_ADAPTER_TYPE,
    ETH_INGR_DROP_RSN_NONCOMPLIANT_EF,
    ETH_INGR_DROP_RSN_NONCOMPLIANT_TERA,
    ETH_INGR_DROP_RSN_MAX,
};

/* Eth ingress drop reason string */
static const char * eth_ingress_drop_reason_str[ETH_INGR_DROP_RSN_MAX] = {
    "drop_rsn_invalid_role_type",    "drop_rsn_invalid_pkt_layers",       "drop_rsn_invalid_icmp_type",
    "drop_rsn_invalid_adapter_type", "drop_rsn_pkt_noncompliant_with_ef", "drop_rsn_pkt_noncompliant_with_tera",
};

/* Eth ingress statistics struct */
struct eth_ingress_stats
{
    volatile uint64_t total_pkts;
    volatile uint64_t pkts_per_batch;
    volatile uint64_t to_bridge;
    volatile uint64_t to_vwire;
    volatile uint64_t to_health_check;
    volatile uint64_t to_forwarder;
    volatile uint64_t to_bfd;
    volatile uint64_t to_ef_ingress;
    volatile uint64_t to_eth_egress;
    volatile uint64_t to_tera_ingress;
    volatile uint64_t drop_reason[ETH_INGR_DROP_RSN_MAX];
} __rte_cache_aligned;

static struct eth_ingress_stats stats_per_graph[RTE_MAX_LCORE] = {};

/* Eth ingress node context */
struct eth_ingress_node_ctx
{
    /* Cached next index */
    uint16_t next_index;
};

#define ETH_INGRESS_NODE_LAST_NEXT(ctx) (((struct eth_ingress_node_ctx *)ctx)->next_index)

/* Filtering ARP replay packet */
static int arp_reply_filter(struct mr_dev_desc * dev_desc, struct rte_mbuf * mbuf)
{
    struct rte_ether_hdr * eth_hdr = rte_pktmbuf_mtod(mbuf, struct rte_ether_hdr *);
    struct rte_arp_hdr * arp_hdr = (struct rte_arp_hdr *)((char *)eth_hdr + sizeof(struct rte_ether_hdr));

    if ((eth_hdr->ether_type == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP)) &&
        (arp_hdr->arp_opcode == rte_cpu_to_be_16(RTE_ARP_OP_REQUEST)) &&
        (arp_hdr->arp_data.arp_tip == dev_desc->in_addr.s_addr))
    {
        arp_hdr->arp_opcode = rte_cpu_to_be_16(RTE_ARP_OP_REPLY);

        /* Switch src and dst data and set bonding MAC */
        rte_ether_addr_copy(&eth_hdr->src_addr, &eth_hdr->dst_addr);
        rte_ether_addr_copy(&dev_desc->eth_addr, &eth_hdr->src_addr);

        rte_ether_addr_copy(&arp_hdr->arp_data.arp_sha, &arp_hdr->arp_data.arp_tha);
        arp_hdr->arp_data.arp_tip = arp_hdr->arp_data.arp_sip;

        rte_ether_addr_copy(&dev_desc->eth_addr, &arp_hdr->arp_data.arp_sha);
        arp_hdr->arp_data.arp_sip = dev_desc->in_addr.s_addr;

        return RT_SUCCESS;
    }
    return RT_ERR;
}

/* Filtering ICMP replay packet */
static int icmp_reply_filter(struct mr_dev_desc * dev_desc, struct rte_mbuf * mbuf)
{
    struct rte_ether_hdr * eth_hdr = rte_pktmbuf_mtod(mbuf, struct rte_ether_hdr *);
    struct rte_ipv4_hdr * ipv4_hdr = (struct rte_ipv4_hdr *)((char *)eth_hdr + sizeof(struct rte_ether_hdr));
    struct rte_icmp_hdr * icmp_hdr = (struct rte_icmp_hdr *)((char *)ipv4_hdr + sizeof(struct rte_ipv4_hdr));

    if ((icmp_hdr->icmp_type == RTE_IP_ICMP_ECHO_REQUEST) && (ipv4_hdr->dst_addr == dev_desc->in_addr.s_addr))
    {
        /* Icmp type set adn recalculate the checksum */
        icmp_hdr->icmp_type = RTE_IP_ICMP_ECHO_REPLY;
        uint32_t cksum = ~icmp_hdr->icmp_cksum & 0xffff;
        cksum += ~RTE_BE16(RTE_IP_ICMP_ECHO_REQUEST << 8) & 0xffff;
        cksum += RTE_BE16(RTE_IP_ICMP_ECHO_REPLY << 8);
        cksum = (cksum & 0xffff) + (cksum >> 16);
        cksum = (cksum & 0xffff) + (cksum >> 16);
        icmp_hdr->icmp_cksum = ~cksum;

        /* Switch src and dst data and set bonding IP */
        uint32_t ip_addr = ipv4_hdr->src_addr;
        ipv4_hdr->src_addr = ipv4_hdr->dst_addr;
        ipv4_hdr->dst_addr = ip_addr;

        /* Recalculate the checksum */
        ipv4_hdr->hdr_checksum = 0;
        ipv4_hdr->hdr_checksum = rte_ipv4_cksum(ipv4_hdr);

        /* Switch src and dst data and set bonding MAC */
        struct rte_ether_addr ether_addr_swap;
        rte_ether_addr_copy(&eth_hdr->src_addr, &ether_addr_swap);
        rte_ether_addr_copy(&eth_hdr->dst_addr, &eth_hdr->src_addr);
        rte_ether_addr_copy(&ether_addr_swap, &eth_hdr->dst_addr);

        return RT_SUCCESS;
    }
    return RT_ERR;
}

/* Filtering kernel resp device */
static int kernel_resp_dev_filter(struct mr_dev_desc * dev_desc, struct rte_mbuf * mbuf,
                                  struct pkt_parser_result * parser_result)
{
    /* not local's mac addr or broadcast packet, ignore it */
    const struct rte_ether_hdr * ether_hdr = rte_pktmbuf_mtod(mbuf, const struct rte_ether_hdr *);
    if (rte_is_broadcast_ether_addr(&ether_hdr->dst_addr) == 0 &&
        rte_is_multicast_ether_addr(&ether_hdr->dst_addr) == 0 &&
        rte_is_same_ether_addr(&ether_hdr->dst_addr, &dev_desc->eth_addr) == 0)
    {
        return 0;
    }

    const struct rte_vlan_hdr * vlan_hdr = NULL;
    rte_be16_t eth_proto = ether_hdr->ether_type;
    if (eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_VLAN))
    {
        /* VLAN requires the device to be operating in trunk mode */
        if (dev_desc->dev_mode != MR_DEV_MODE_TRUNK)
        {
            return 0;
        }

        vlan_hdr = rte_pktmbuf_mtod_offset(mbuf, const struct rte_vlan_hdr *, parser_result->layers[1].offset);
        eth_proto = vlan_hdr->eth_proto;
    }

    /* for arp, rarp and lldp, only check the dest's mac address */
    struct representor_config * resp_cfg = dev_desc->representor_config;
    if (eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_ARP) && resp_cfg->redirect_local_arp > 0)
    {
        return 1;
    }
    else if (eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_RARP) && resp_cfg->redirect_local_rarp > 0)
    {
        return 1;
    }
    else if (eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_LLDP) && resp_cfg->redirect_local_lldp > 0)
    {
        return 1;
    }

    /* Check vlan and dst ip addr */
    int ret;
    uint16_t vlan_id = 0;
    struct mr_generic_ip_hdr generic_ip_hdr;
    if (eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV4))
    {
        if (vlan_hdr != NULL)
        {
            const struct rte_ipv4_hdr * ipv4_hdr =
                rte_pktmbuf_mtod_offset(mbuf, const struct rte_ipv4_hdr *, parser_result->layers[2].offset);

            vlan_id = vlan_hdr->vlan_tci;
            generic_ip_hdr.sa_family = AF_INET;
            generic_ip_hdr.ipv4_hdr = ipv4_hdr;
            ret = mr_is_local_addr_for_trunk(dev_desc, vlan_id, &generic_ip_hdr);
        }
        else
        {
            const struct rte_ipv4_hdr * ipv4_hdr =
                rte_pktmbuf_mtod_offset(mbuf, const struct rte_ipv4_hdr *, parser_result->layers[1].offset);
            generic_ip_hdr.sa_family = AF_INET;
            generic_ip_hdr.ipv4_hdr = ipv4_hdr;
            ret = mr_is_local_addr(dev_desc, &generic_ip_hdr);
        }

        if (ret == RT_ERR)
        {
            return 0;
        }
    }
    else if (eth_proto == rte_cpu_to_be_16(RTE_ETHER_TYPE_IPV6))
    {
        if (vlan_hdr != NULL)
        {
            const struct rte_ipv6_hdr * ipv6_hdr =
                rte_pktmbuf_mtod_offset(mbuf, const struct rte_ipv6_hdr *, parser_result->layers[2].offset);

            vlan_id = vlan_hdr->vlan_tci;
            generic_ip_hdr.sa_family = AF_INET6;
            generic_ip_hdr.ipv6_hdr = ipv6_hdr;
            ret = mr_is_local_addr_for_trunk(dev_desc, vlan_id, &generic_ip_hdr);
        }
        else
        {
            const struct rte_ipv6_hdr * ipv6_hdr =
                rte_pktmbuf_mtod_offset(mbuf, const struct rte_ipv6_hdr *, parser_result->layers[1].offset);
            generic_ip_hdr.sa_family = AF_INET6;
            generic_ip_hdr.ipv6_hdr = ipv6_hdr;
            ret = mr_is_local_addr(dev_desc, &generic_ip_hdr);
        }

        if ((ret == RT_ERR) && (!MR_IS_IPV6_SOLICITED_NODE_MCAST(generic_ip_hdr.ipv6_hdr->dst_addr)))
        {
            return 0;
        }
    }
    else
    {
        return 0;
    }

    /* Get udp dst port,current only support eth+vlan+ip+udp/eth+ip+udp */
    struct rte_udp_hdr * udp_hdr = NULL;
    if ((vlan_hdr != NULL) && (parser_result->layers[3].type_id == LAYER_TYPE_ID_UDP))
    {
        udp_hdr = rte_pktmbuf_mtod_offset(mbuf, struct rte_udp_hdr *, parser_result->layers[3].offset);
    }
    else if ((vlan_hdr == NULL) && (parser_result->layers[2].type_id == LAYER_TYPE_ID_UDP))
    {
        udp_hdr = rte_pktmbuf_mtod_offset(mbuf, struct rte_udp_hdr *, parser_result->layers[2].offset);
    }
    else
    {
        return 1;
    }

    /* BFD and GVXLAN packets are not sent to the kernel or respective devices */
    if (udp_hdr->dst_port == rte_cpu_to_be_16(MR_ETH_INGRESS_BFD_PORT))
    {
        return 0;
    }
    else if (udp_hdr->dst_port == rte_cpu_to_be_16(G_VXLAN_DPORT))
    {
        return 0;
    }
    else
    {
        return 1;
    }

    assert(false);
}

/* Endpoint device packet handler */
static int endpoint_dev_packet_handler(struct mr_dev_desc * dev_desc, struct eth_ingress_stats * stats,
                                       struct rte_mbuf * mbuf, struct mrb_metadata * mrb_meta,
                                       enum eth_ingress_drop_reason * out_drop_reason)
{
    struct pkt_parser_result * parser_result = &mrb_meta->pkt_parser_result;

    /* this device has a kernel resp device, redirect all arp, icmp and bfd packets to resp device */
    if (dev_desc->device_representor != NULL)
    {
        /* should go to kernel resp device */
        if (kernel_resp_dev_filter(dev_desc->device_representor, mbuf, parser_result) > 0)
        {
            /* goto the kernel resp device directly */
            mrb_meta->port_egress = dev_desc->device_representor->port_id;
            stats->to_eth_egress++;
            return ETH_INGRESS_NEXT_ETH_EGRESS;
        }
    }

    /* as a resp device, all packet from resp device should go to represented device directly */
    else if (dev_desc->represented_device != NULL)
    {
        mrb_meta->port_egress = dev_desc->represented_device->port_id;
        stats->to_eth_egress++;
        return ETH_INGRESS_NEXT_ETH_EGRESS;
    }

    /* arp reply */
    if (unlikely(parser_result->nr_layers < 3))
    {
        if (arp_reply_filter(dev_desc, mbuf) == RT_SUCCESS)
        {
            mrb_meta->port_egress = mrb_meta->port_ingress;
            stats->to_eth_egress++;
            return ETH_INGRESS_NEXT_ETH_EGRESS;
        }
        else
        {
            *out_drop_reason = ETH_INGR_DROP_RSN_INVALID_LAYERS;
            stats->drop_reason[*out_drop_reason]++;
            return ETH_INGRESS_NEXT_PKT_DROP;
        }
    }

    /* icmp reply,only support v4 */
    const struct rte_ipv4_hdr * ipv4_hdr =
        rte_pktmbuf_mtod_offset(mbuf, struct rte_ipv4_hdr *, parser_result->layers[1].offset);
    assert(ipv4_hdr != NULL);

    if (unlikely((parser_result->layers[2].type_id == LAYER_TYPE_ID_ICMP) &&
                 (ipv4_hdr->dst_addr == dev_desc->in_addr.s_addr)))
    {
        if (icmp_reply_filter(dev_desc, mbuf) == RT_SUCCESS)
        {
            mrb_meta->port_egress = mrb_meta->port_ingress;
            stats->to_eth_egress++;
            return ETH_INGRESS_NEXT_ETH_EGRESS;
        }
        else
        {
            *out_drop_reason = ETH_INGR_DROP_RSN_INVALID_ICMP_TYPE;
            stats->drop_reason[*out_drop_reason]++;
            return ETH_INGRESS_NEXT_PKT_DROP;
        }
    }

    /* bfd pkt check */
    const struct rte_udp_hdr * udp_hdr =
        rte_pktmbuf_mtod_offset(mbuf, struct rte_udp_hdr *, parser_result->layers[2].offset);
    assert(udp_hdr != NULL);

    const uint16_t dst_port = udp_hdr->dst_port;
    if (unlikely(dst_port == rte_cpu_to_be_16(MR_ETH_INGRESS_BFD_PORT)))
    {
        if (unlikely((ipv4_hdr->dst_addr == dev_desc->in_addr.s_addr) &&
                     (parser_result->layers[2].type_id == LAYER_TYPE_ID_UDP)))
        {
            stats->to_bfd++;
            return ETH_INGRESS_NEXT_BFD;
        }
    }

    /* from port id match adapter type */
    enum adapter_type adapter_type = port_adapter_mapping_match(dev_desc->port_id);
    if (adapter_type == ADAPTER_TYPE_EF)
    {
        if (unlikely(parser_result->layers[0].type_id != LAYER_TYPE_ID_ETHER ||
                     parser_result->layers[1].type_id != LAYER_TYPE_ID_IPV4 ||
                     parser_result->layers[2].type_id != LAYER_TYPE_ID_UDP))
        {
            *out_drop_reason = ETH_INGR_DROP_RSN_NONCOMPLIANT_EF;
            stats->drop_reason[*out_drop_reason]++;
            return ETH_INGRESS_NEXT_PKT_DROP;
        }

        if (unlikely(ipv4_hdr->dst_addr != dev_desc->in_addr.s_addr))
        {
            *out_drop_reason = ETH_INGR_DROP_RSN_NONCOMPLIANT_EF;
            stats->drop_reason[*out_drop_reason]++;
            return ETH_INGRESS_NEXT_PKT_DROP;
        }

        if (unlikely(dst_port != rte_cpu_to_be_16(G_VXLAN_DPORT)))
        {
            *out_drop_reason = ETH_INGR_DROP_RSN_NONCOMPLIANT_EF;
            stats->drop_reason[*out_drop_reason]++;
            return ETH_INGRESS_NEXT_PKT_DROP;
        }

        stats->to_ef_ingress++;
        return ETH_INGRESS_NEXT_EF_INGRESS;
    }
    else if (adapter_type == ADAPTER_TYPE_TERA)
    {
        /* Tera adapter requires the NIC to be in non-promiscuous mode */
        if (unlikely(parser_result->layers[0].type_id != LAYER_TYPE_ID_ETHER ||
                     parser_result->layers[1].type_id != LAYER_TYPE_ID_VLAN))
        {
            *out_drop_reason = ETH_INGR_DROP_RSN_NONCOMPLIANT_TERA;
            stats->drop_reason[*out_drop_reason]++;
            return ETH_INGRESS_NEXT_PKT_DROP;
        }

        stats->to_tera_ingress++;
        return ETH_INGRESS_NEXT_TERA_INGRESS;
    }

    *out_drop_reason = ETH_INGR_DROP_RSN_INVALID_ADAPTER_TYPE;
    stats->drop_reason[*out_drop_reason]++;
    return ETH_INGRESS_NEXT_PKT_DROP;
}

/* Generate and store the trace information */
static __rte_always_inline void gen_store_trace_info_ingress(struct rte_node * node, struct rte_mbuf * mbuf,
                                                             uint16_t next_node_index, struct eth_ingress_stats * stats,
                                                             struct mr_dev_desc * dev_desc,
                                                             enum eth_ingress_drop_reason drop_reason)
{
    /* Populate the next node infomation */
    char str_record[MR_STRING_MAX];
    int len = snprintf(str_record, sizeof(str_record), "next node:%s", node->nodes[next_node_index]->name);

    /* Populate the reason for next node */
    switch (next_node_index)
    {
    case ETH_INGRESS_NEXT_PKT_DROP: {
        assert(drop_reason < ETH_INGR_DROP_RSN_MAX);
        len +=
            snprintf(str_record + len, sizeof(str_record) - len, ", rsn:%s", eth_ingress_drop_reason_str[drop_reason]);
        break;
    }
    break;
    case ETH_INGRESS_NEXT_BRIDGE:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:bridge,id %u", dev_desc->bridge_index);
        break;
    case ETH_INGRESS_NEXT_BFD:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:local bfd pkt ");
        break;
    case ETH_INGRESS_NEXT_VWIRE_INGRESS:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:role is vwire");
        break;
    case ETH_INGRESS_NEXT_TERA_INGRESS:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:tera adapter");
        break;
    case ETH_INGRESS_NEXT_FORWARDER:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:role is nf");
        break;
    case ETH_INGRESS_NEXT_HEALTH_CHECK:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:health check pkt");
        break;
    case ETH_INGRESS_NEXT_ETH_EGRESS:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:resp or arp/icmp");
        break;
    case ETH_INGRESS_NEXT_EF_INGRESS:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:ef adapter");
        break;
    default:
        len += snprintf(str_record + len, sizeof(str_record) - len, ", rsn:unknown");
        break;
    }

    /* Emit the trace record */
    struct dp_trace_record_meta meta = {
        .measurement_type = DP_TRACE_MEASUREMENT_TYPE_TRACE, .appsym = MR_TRACE_APPSYM, .module = node->name};
    dp_trace_record_emit_str(sc_main_get()->trace, mbuf, rte_lcore_id(), &meta, str_record);
}

/* Eth ingress node process function */
static __rte_always_inline uint16_t eth_ingress_node_process(struct rte_graph * graph, struct rte_node * node,
                                                             void ** objs, uint16_t cnt)

{
    /* Get pkt num and pkt buffer */
    uint16_t last_spec = 0;
    uint16_t n_left_from = cnt;
    uint16_t batch_next_node_index = ETH_INGRESS_NODE_LAST_NEXT(node->ctx);
    void ** batch_pkts = objs;
    struct rte_mbuf ** pkts = (struct rte_mbuf **)objs;

    /* Single Packet Processing */
    uint16_t last_port_ingress = UINT16_MAX;
    struct eth_ingress_stats stats = {};
    enum eth_ingress_drop_reason drop_reason = ETH_INGR_DROP_RSN_MAX;
    struct mr_dev_desc * dev_desc = NULL;
    struct devmgr_main * devmgr_main = sc_main_get()->devmgr_main;

    while (n_left_from > 0)
    {
        struct rte_mbuf * mbuf = pkts[0];
        pkts += 1;
        n_left_from -= 1;

        /* Get the device descriptor */
        struct mrb_metadata * mrb_meta = (struct mrb_metadata *)mrbuf_cz_data(mbuf, MR_NODE_CTRLZONE_ID);
        if (unlikely(mrb_meta->port_ingress != last_port_ingress))
        {
            last_port_ingress = mrb_meta->port_ingress;
            dev_desc = mr_dev_desc_lookup_by_port_id(devmgr_main, mrb_meta->port_ingress);
            assert(dev_desc != NULL);
        }

        /* Bridge interface need go to bridge node */
        uint16_t next_node_index;
        if (dev_desc->bridge_index != UINT8_MAX)
        {
            stats.to_bridge++;
            next_node_index = ETH_INGRESS_NEXT_BRIDGE;
            goto node_enqueue;
        }

        switch (dev_desc->role_type)
        {
        case MR_DEV_ROLE_VWIRE_INTERFACE:
            stats.to_vwire++;
            next_node_index = ETH_INGRESS_NEXT_VWIRE_INGRESS;
            break;
        case MR_DEV_ROLE_ENDPOINT_INTERFACE:
        case MR_DEV_ROLE_KERNEL_RESP_INTERFACE:
            next_node_index = endpoint_dev_packet_handler(dev_desc, &stats, mbuf, mrb_meta, &drop_reason);
            break;
        case MR_DEV_ROLE_NF_INTERFACE: {
            /* check health check pkt */
            if (likely(mrb_meta->health_check != 1))
            {
                stats.to_forwarder++;
                next_node_index = ETH_INGRESS_NEXT_FORWARDER;
            }
            else
            {
                stats.to_health_check++;
                next_node_index = ETH_INGRESS_NEXT_HEALTH_CHECK;
            }
        }
        break;
        default:
            drop_reason = ETH_INGR_DROP_RSN_INVALID_ROLE_TYPE;
            stats.drop_reason[drop_reason]++;
            next_node_index = ETH_INGRESS_NEXT_PKT_DROP;
            break;
        }

    node_enqueue:
#if 0
        /* Check if tracing is enabled for the current Mbuf */
        if (unlikely(dp_trace_record_can_emit(mbuf, DP_TRACE_MEASUREMENT_TYPE_TRACE)))
        {
            gen_store_trace_info_ingress(node, mbuf, next_node_index, &stats, dev_desc, drop_reason);
        }
#endif
        /* Check if the next index needs to be changed */
        if (unlikely(batch_next_node_index != next_node_index))
        {
            /* Enqueue the last packets if the next index has changed */
            rte_node_enqueue(graph, node, batch_next_node_index, batch_pkts, last_spec);
            batch_pkts += last_spec;
            last_spec = 1;
            batch_next_node_index = next_node_index;
        }
        else
        {
            /* If the next index hasn't changed, update the last packets */
            last_spec++;
        }
    }

    /* Process any remaining packets */
    if (likely(last_spec > 0))
        rte_node_enqueue(graph, node, batch_next_node_index, batch_pkts, last_spec);

    /* Update last next index */
    ETH_INGRESS_NODE_LAST_NEXT(node->ctx) = batch_next_node_index;

    /* Update graph stats */
    struct eth_ingress_stats * graph_stats = &stats_per_graph[graph->id];
    graph_stats->total_pkts += cnt;
    graph_stats->pkts_per_batch = cnt;
    graph_stats->to_bridge += stats.to_bridge;
    graph_stats->to_vwire += stats.to_vwire;
    graph_stats->to_health_check += stats.to_health_check;
    graph_stats->to_forwarder += stats.to_forwarder;
    graph_stats->to_bfd += stats.to_bfd;
    graph_stats->to_ef_ingress += stats.to_ef_ingress;
    graph_stats->to_eth_egress += stats.to_eth_egress;
    graph_stats->to_tera_ingress += stats.to_tera_ingress;

    for (int i = 0; i < ETH_INGR_DROP_RSN_MAX; i++)
    {
        graph_stats->drop_reason[i] += stats.drop_reason[i];
    }

    return cnt;
}

/* Eth ingress node init function */
static int eth_ingress_node_init(const struct rte_graph * graph, struct rte_node * node)
{
    ETH_INGRESS_NODE_LAST_NEXT(node->ctx) = ETH_INGRESS_NEXT_EF_INGRESS;
    return 0;
}

/* Eth ingress node base */
static struct rte_node_register eth_ingress_node_base = {
    .process = eth_ingress_node_process,
    .name = "eth_ingress",
    .init = NULL,
    .nb_edges = ETH_INGRESS_NEXT_MAX,
    .next_nodes =
        {
            [ETH_INGRESS_NEXT_EF_INGRESS] = "ef_ingress",
            [ETH_INGRESS_NEXT_BRIDGE] = "bridge",
            [ETH_INGRESS_NEXT_BFD] = "bfd",
            [ETH_INGRESS_NEXT_VWIRE_INGRESS] = "vwire_ingress",
            [ETH_INGRESS_NEXT_TERA_INGRESS] = "tera_ingress",
            [ETH_INGRESS_NEXT_ETH_EGRESS] = "eth_egress",
            [ETH_INGRESS_NEXT_FORWARDER] = "forwarder",
            [ETH_INGRESS_NEXT_HEALTH_CHECK] = "health_check_deal_answer",
            [ETH_INGRESS_NEXT_PKT_DROP] = "pkt_drop_trap",
        },
    .init = eth_ingress_node_init,
};

RTE_NODE_REGISTER(eth_ingress_node_base);

/************************************** Eth Ingress Statistics **************************************/
cJSON * eth_ingress_node_monit_loop(struct sc_main * sc)
{
    cJSON * json_root = cJSON_CreateObject();
    unsigned int nr_graphs = sc->nr_io_thread;

    uint64_t total_pkts[nr_graphs];
    uint64_t pkts_per_batch[nr_graphs];
    uint64_t to_bridge[nr_graphs];
    uint64_t to_vwire[nr_graphs];
    uint64_t to_health_check[nr_graphs];
    uint64_t to_forwarder[nr_graphs];
    uint64_t to_bfd[nr_graphs];
    uint64_t to_ef_ingress[nr_graphs];
    uint64_t to_eth_egress[nr_graphs];
    uint64_t to_tera_ingress[nr_graphs];
    uint64_t drop_reason[ETH_INGR_DROP_RSN_MAX][nr_graphs];

    for (uint32_t graph_id = 0; graph_id < nr_graphs; graph_id++)
    {
        struct eth_ingress_stats * stats = &stats_per_graph[graph_id];
        if (stats->total_pkts == 0)
        {
            total_pkts[graph_id] = 0;
            pkts_per_batch[graph_id] = 0;
            to_bridge[graph_id] = 0;
            to_vwire[graph_id] = 0;
            to_health_check[graph_id] = 0;
            to_forwarder[graph_id] = 0;
            to_bfd[graph_id] = 0;
            to_ef_ingress[graph_id] = 0;
            to_eth_egress[graph_id] = 0;
            to_tera_ingress[graph_id] = 0;

            for (int i = 0; i < ETH_INGR_DROP_RSN_MAX; i++)
            {
                drop_reason[i][graph_id] = 0;
            }

            continue;
        }

        total_pkts[graph_id] = stats->total_pkts;
        pkts_per_batch[graph_id] = stats->pkts_per_batch;
        to_bridge[graph_id] = stats->to_bridge;
        to_vwire[graph_id] = stats->to_vwire;
        to_health_check[graph_id] = stats->to_health_check;
        to_forwarder[graph_id] = stats->to_forwarder;
        to_bfd[graph_id] = stats->to_bfd;
        to_ef_ingress[graph_id] = stats->to_ef_ingress;
        to_eth_egress[graph_id] = stats->to_eth_egress;
        to_tera_ingress[graph_id] = stats->to_tera_ingress;

        for (int i = 0; i < ETH_INGR_DROP_RSN_MAX; i++)
        {
            drop_reason[i][graph_id] = stats->drop_reason[i];
        }
    }

    cJSON * json_total_pkts = create_uint64_array(total_pkts, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, total_pkts", json_total_pkts);

    cJSON * json_pkts_per_batch = create_uint64_array(pkts_per_batch, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, pkts_per_batch", json_pkts_per_batch);

    cJSON * json_to_bridge = create_uint64_array(to_bridge, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_bridge", json_to_bridge);

    cJSON * json_to_vwire = create_uint64_array(to_vwire, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_vwire", json_to_vwire);

    cJSON * json_to_health_check = create_uint64_array(to_health_check, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_health_check", json_to_health_check);

    cJSON * json_to_forwarder = create_uint64_array(to_forwarder, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_forwarder", json_to_forwarder);

    cJSON * json_to_bfd = create_uint64_array(to_bfd, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_bfd", json_to_bfd);

    cJSON * json_to_ef_ingress = create_uint64_array(to_ef_ingress, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_ef_ingress", json_to_ef_ingress);

    cJSON * json_to_eth_egress = create_uint64_array(to_eth_egress, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_eth_egress", json_to_eth_egress);

    cJSON * json_to_tera_ingress = create_uint64_array(to_tera_ingress, nr_graphs);
    cJSON_AddItemToObject(json_root, "eth_ingress, to_tera_ingress", json_to_tera_ingress);

    for (int i = 0; i < ETH_INGR_DROP_RSN_MAX; i++)
    {
        char str_title[MR_STRING_MAX];
        snprintf(str_title, sizeof(str_title), "eth_ingress, %s", eth_ingress_drop_reason_str[i]);

        cJSON * json_drop_reason = create_uint64_array(drop_reason[i], nr_graphs);
        cJSON_AddItemToObject(json_root, str_title, json_drop_reason);
    }

    return json_root;
}