1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
|
prefix = /usr
exec_prefix = /usr
sysconfdir = /etc
localstatedir = /var
sbindir = /usr/sbin
logdir = ${localstatedir}/log/radius
raddbdir = ${sysconfdir}/raddb
radacctdir = ${logdir}/radacct
name = radiusd
confdir = ${raddbdir}
modconfdir = ${confdir}/mods-config
certdir = ${confdir}/certs
cadir = ${confdir}/certs
run_dir = ${localstatedir}/run/${name}
db_dir = ${localstatedir}/lib/radiusd
libdir = /usr/lib64/freeradius
pidfile = ${run_dir}/${name}.pid
correct_escapes = true
max_request_time = 30
cleanup_delay = 5
max_requests = 16384
hostname_lookups = no
log {
destination = files
#
colourise = yes
#
file = ${logdir}/radius.log
syslog_facility = daemon
# Log the full User-Name attribute, as it was found in the request.
#
# allowed values: {no, yes}
#
stripped_names = no
# Log authentication requests to the log file.
#
# allowed values: {no, yes}
#
auth = yes
# Log passwords with the authentication requests.
# auth_badpass - logs password if it's rejected
# auth_goodpass - logs password if it's correct
#
# allowed values: {no, yes}
#
auth_badpass = yes
auth_goodpass = yes
# Log additional text at the end of the "Login OK" messages.
# for these to work, the "auth" and "auth_goodpass" or "auth_badpass"
# configurations above have to be set to "yes".
#
# The strings below are dynamically expanded, which means that
# you can put anything you want in them. However, note that
# this expansion can be slow, and can negatively impact server
# performance.
#
# The message when the user exceeds the Simultaneous-Use limit.
#
msg_denied = "You are already logged in - access denied"
}
checkrad = ${sbindir}/checkrad
security {
# chroot: directory where the server does "chroot".
#
# The chroot is done very early in the process of starting
# the server. After the chroot has been performed it
# switches to the "user" listed below (which MUST be
# specified). If "group" is specified, it switches to that
# group, too. Any other groups listed for the specified
# "user" in "/etc/group" are also added as part of this
# process.
#
# The current working directory (chdir / cd) is left
# *outside* of the chroot until all of the modules have been
# initialized. This allows the "raddb" directory to be left
# outside of the chroot. Once the modules have been
# initialized, it does a "chdir" to ${logdir}. This means
# that it should be impossible to break out of the chroot.
#
# If you are worried about security issues related to this
# use of chdir, then simply ensure that the "raddb" directory
# is inside of the chroot, end be sure to do "cd raddb"
# BEFORE starting the server.
#
# If the server is statically linked, then the only files
# that have to exist in the chroot are ${run_dir} and
# ${logdir}. If you do the "cd raddb" as discussed above,
# then the "raddb" directory has to be inside of the chroot
# directory, too.
#
# chroot = /path/to/chroot/directory
# user/group: The name (or #number) of the user/group to run radiusd as.
#
# If these are commented out, the server will run as the
# user/group that started it. In order to change to a
# different user/group, you MUST be root ( or have root
# privileges ) to start the server.
#
# We STRONGLY recommend that you run the server with as few
# permissions as possible. That is, if you're not using
# shadow passwords, the user and group items below should be
# set to radius'.
#
# NOTE that some kernels refuse to setgid(group) when the
# value of (unsigned)group is above 60000; don't use group
# "nobody" on these systems!
#
# On systems with shadow passwords, you might have to set
# 'group = shadow' for the server to be able to read the
# shadow password file. If you can authenticate users while
# in debug mode, but not in daemon mode, it may be that the
# debugging mode server is running as a user that can read
# the shadow info, and the user listed below can not.
#
# The server will also try to use "initgroups" to read
# /etc/groups. It will join all groups where "user" is a
# member. This can allow for some finer-grained access
# controls.
#
user = radiusd
group = radiusd
# Core dumps are a bad thing. This should only be set to
# 'yes' if you're debugging a problem with the server.
#
# allowed values: {no, yes}
#
allow_core_dumps = no
#
# max_attributes: The maximum number of attributes
# permitted in a RADIUS packet. Packets which have MORE
# than this number of attributes in them will be dropped.
#
# If this number is set too low, then no RADIUS packets
# will be accepted.
#
# If this number is set too high, then an attacker may be
# able to send a small number of packets which will cause
# the server to use all available memory on the machine.
#
# Setting this number to 0 means "allow any number of attributes"
max_attributes = 200
#
# reject_delay: When sending an Access-Reject, it can be
# delayed for a few seconds. This may help slow down a DoS
# attack. It also helps to slow down people trying to brute-force
# crack a users password.
#
# Setting this number to 0 means "send rejects immediately"
#
# If this number is set higher than 'cleanup_delay', then the
# rejects will be sent at 'cleanup_delay' time, when the request
# is deleted from the internal cache of requests.
#
# As of Version 3.0.5, "reject_delay" has sub-second resolution.
# e.g. "reject_delay = 1.4" seconds is possible.
#
# Useful ranges: 1 to 5
reject_delay = 1
#
# status_server: Whether or not the server will respond
# to Status-Server requests.
#
# When sent a Status-Server message, the server responds with
# an Access-Accept or Accounting-Response packet.
#
# This is mainly useful for administrators who want to "ping"
# the server, without adding test users, or creating fake
# accounting packets.
#
# It's also useful when a NAS marks a RADIUS server "dead".
# The NAS can periodically "ping" the server with a Status-Server
# packet. If the server responds, it must be alive, and the
# NAS can start using it for real requests.
#
# See also raddb/sites-available/status
#
status_server = yes
}
proxy_requests = yes
$INCLUDE proxy.conf
$INCLUDE clients.conf
thread pool {
# Number of servers to start initially --- should be a reasonable
# ballpark figure.
start_servers = 5
# Limit on the total number of servers running.
#
# If this limit is ever reached, clients will be LOCKED OUT, so it
# should NOT BE SET TOO LOW. It is intended mainly as a brake to
# keep a runaway server from taking the system with it as it spirals
# down...
#
# You may find that the server is regularly reaching the
# 'max_servers' number of threads, and that increasing
# 'max_servers' doesn't seem to make much difference.
#
# If this is the case, then the problem is MOST LIKELY that
# your back-end databases are taking too long to respond, and
# are preventing the server from responding in a timely manner.
#
# The solution is NOT do keep increasing the 'max_servers'
# value, but instead to fix the underlying cause of the
# problem: slow database, or 'hostname_lookups=yes'.
#
# For more information, see 'max_request_time', above.
#
max_servers = 32
# Server-pool size regulation. Rather than making you guess
# how many servers you need, FreeRADIUS dynamically adapts to
# the load it sees, that is, it tries to maintain enough
# servers to handle the current load, plus a few spare
# servers to handle transient load spikes.
#
# It does this by periodically checking how many servers are
# waiting for a request. If there are fewer than
# min_spare_servers, it creates a new spare. If there are
# more than max_spare_servers, some of the spares die off.
# The default values are probably OK for most sites.
#
min_spare_servers = 3
max_spare_servers = 10
# When the server receives a packet, it places it onto an
# internal queue, where the worker threads (configured above)
# pick it up for processing. The maximum size of that queue
# is given here.
#
# When the queue is full, any new packets will be silently
# discarded.
#
# The most common cause of the queue being full is that the
# server is dependent on a slow database, and it has received
# a large "spike" of traffic. When that happens, there is
# very little you can do other than make sure the server
# receives less traffic, or make sure that the database can
# handle the load.
#
# max_queue_size = 65536
# There may be memory leaks or resource allocation problems with
# the server. If so, set this value to 300 or so, so that the
# resources will be cleaned up periodically.
#
# This should only be necessary if there are serious bugs in the
# server which have not yet been fixed.
#
# '0' is a special value meaning 'infinity', or 'the servers never
# exit'
max_requests_per_server = 0
# Automatically limit the number of accounting requests.
# This configuration item tracks how many requests per second
# the server can handle. It does this by tracking the
# packets/s received by the server for processing, and
# comparing that to the packets/s handled by the child
# threads.
#
# If the received PPS is larger than the processed PPS, *and*
# the queue is more than half full, then new accounting
# requests are probabilistically discarded. This lowers the
# number of packets that the server needs to process. Over
# time, the server will "catch up" with the traffic.
#
# Throwing away accounting packets is usually safe and low
# impact. The NAS will retransmit them in a few seconds, or
# even a few minutes. Vendors should read RFC 5080 Section 2.2.1
# to see how accounting packets should be retransmitted. Using
# any other method is likely to cause network meltdowns.
#
auto_limit_acct = no
}
modules {
#
# Each module has a configuration as follows:
#
# name [ instance ] {
# config_item = value
# ...
# }
#
# The 'name' is used to load the 'rlm_name' library
# which implements the functionality of the module.
#
# The 'instance' is optional. To have two different instances
# of a module, it first must be referred to by 'name'.
# The different copies of the module are then created by
# inventing two 'instance' names, e.g. 'instance1' and 'instance2'
#
# The instance names can then be used in later configuration
# INSTEAD of the original 'name'. See the 'radutmp' configuration
# for an example.
#
#
# As of 3.0, modules are in mods-enabled/. Files matching
# the regex /[a-zA-Z0-9_.]+/ are loaded. The modules are
# initialized ONLY if they are referenced in a processing
# section, such as authorize, authenticate, accounting,
# pre/post-proxy, etc.
#
$INCLUDE mods-enabled/
}
instantiate {
#
# We list the counter module here so that it registers
# the check_name attribute before any module which sets
# it
# daily
# subsections here can be thought of as "virtual" modules.
#
# e.g. If you have two redundant SQL servers, and you want to
# use them in the authorize and accounting sections, you could
# place a "redundant" block in each section, containing the
# exact same text. Or, you could uncomment the following
# lines, and list "redundant_sql" in the authorize and
# accounting sections.
#
# The "virtual" module defined here can also be used with
# dynamic expansions, under a few conditions:
#
# * The section is "redundant", or "load-balance", or
# "redundant-load-balance"
# * The section contains modules ONLY, and no sub-sections
# * all modules in the section are using the same rlm_
# driver, e.g. They are all sql, or all ldap, etc.
#
# When those conditions are satisfied, the server will
# automatically register a dynamic expansion, using the
# name of the "virtual" module. In the example below,
# it will be "redundant_sql". You can then use this expansion
# just like any other:
#
# update reply {
# Filter-Id := "%{redundant_sql: ... }"
# }
#
# In this example, the expansion is done via module "sql1",
# and if that expansion fails, using module "sql2".
#
# For best results, configure the "pool" subsection of the
# module so that "retry_delay" is non-zero. That will allow
# the redundant block to quickly ignore all "down" SQL
# databases. If instead we have "retry_delay = 0", then
# every time the redundant block is used, the server will try
# to open a connection to every "down" database, causing
# problems.
#
#redundant redundant_sql {
# sql1
# sql2
#}
}
policy {
$INCLUDE policy.d/
}
$INCLUDE sites-enabled/
$INCLUDE /etc/raddb/mods-available/sql
$INCLUDE /etc/raddb/mods-available/sqlippool
|