#include #include "fieldstat.h" #include "fieldstat_exporter.h" #include "utils.hpp" TEST(test_performance, merge_performance_when_comprehensive_sampling_multi_instance) { const int INSTANCE_NUM = 100; const int MAX_CELL_NUM = 65535; const int DIMENSION_TOTAL = 100000; // const int INSTANCE_NUM = 2; // const int MAX_CELL_NUM = 1000; // const int DIMENSION_TOTAL = 1024; Fieldstat_tag_list_wrapper *tags[DIMENSION_TOTAL]; for (int i = 0; i < DIMENSION_TOTAL; i++) { tags[i] = new Fieldstat_tag_list_wrapper("my key", i); } struct fieldstat *instances[INSTANCE_NUM]; for (int i = 0; i < INSTANCE_NUM; i++) { struct fieldstat *tmp_i = fieldstat_new(); int cube_id = fieldstat_register_cube(tmp_i, &TEST_SHARED_TAG, 1, SAMPLING_MODE_COMPREHENSIVE, MAX_CELL_NUM); int metric_id = fieldstat_register_counter(tmp_i, cube_id, "metric name", false); for (int j = 0; j < MAX_CELL_NUM; j++) { int cell_id = fieldstat_cube_add(tmp_i, cube_id, tags[rand() % DIMENSION_TOTAL]->get_tag(), 1, 1); if (cell_id == -1) { printf("cell_id == -1\n"); continue; } fieldstat_counter_incrby(tmp_i, cube_id, metric_id, cell_id, 1); } instances[i] = tmp_i; } struct fieldstat *instance_dest = fieldstat_new(); printf("prepare done\n"); clock_t start = clock(); // getchar(); for (int i = 0; i < INSTANCE_NUM; i++) { fieldstat_merge(instance_dest, instances[i]); } // exit(0); clock_t end = clock(); double elapsed_secs = double(end - start) / CLOCKS_PER_SEC; printf("merge_performance_when_comprehensive_sampling_multi_instance elapsed_secs: %f\n", elapsed_secs); EXPECT_TRUE(elapsed_secs < 0.1); fieldstat_free(instance_dest); for (int i = 0; i < INSTANCE_NUM; i++) { fieldstat_free(instances[i]); } for (int i = 0; i < DIMENSION_TOTAL; i++) { delete tags[i]; } } clock_t perform_merge_test(std::function metric_add_func, std::function metric_register_func, enum sampling_mode mode, bool merge_empty_dest) { const int MAX_CELL_NUM = 1000; Fieldstat_tag_list_wrapper *tags[MAX_CELL_NUM]; for (int i = 0; i < MAX_CELL_NUM; i++) { tags[i] = new Fieldstat_tag_list_wrapper("my key", i); } struct fieldstat *instance = fieldstat_new(); int cube_id = fieldstat_register_cube(instance, &TEST_SHARED_TAG, 1, mode, MAX_CELL_NUM); int metric_id = metric_register_func(instance, cube_id); for (int j = 0; j < MAX_CELL_NUM; j++) { int cell_id = fieldstat_cube_add(instance, cube_id, tags[j]->get_tag(), 1, 1); metric_add_func(instance, cube_id, metric_id, cell_id); } struct fieldstat *instance_dest = fieldstat_new(); if (!merge_empty_dest) { fieldstat_merge(instance_dest, instance); } clock_t start = clock(); fieldstat_merge(instance_dest, instance); clock_t end = clock(); fieldstat_free(instance_dest); fieldstat_free(instance); for (int i = 0; i < MAX_CELL_NUM; i++) { delete tags[i]; } return end - start; } TEST(test_performance, merge_performance_one_instance_comprehensive_counter_empty_dest) { // int metric_id = fieldstat_register_counter(tmp_i, cube_id, "metric name", false); // fieldstat_counter_incrby(instance, cube_id, metric_id, cell_id, 1); auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_counter_incrby(instance, cube_id, metric_id, cell_id, 1); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_counter(instance, cube_id, "metric name", false); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_COMPREHENSIVE, true); printf("merge_performance_one_instance_comprehensive_counter_empty_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 1000); } TEST(test_performance, merge_performance_one_instance_comprehensive_hll_empty_dest) { // int metric_id = fieldstat_register_hll(instance, cube_id, "czz_test hll metric", 10); // int ret = fieldstat_hll_add(instance, cube_id, metric_id, cell_id, "hello", 5); auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_hll_add(instance, cube_id, metric_id, cell_id, "hello", 5); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_hll(instance, cube_id, "hll metric", 6); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_COMPREHENSIVE, true); printf("merge_performance_one_instance_comprehensive_hll_empty_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 1000); } TEST(test_performance, merge_performance_one_instance_comprehensive_histogram_empty_dest) { // int metric_id = fieldstat_register_histogram(instance, cube_id, "czz_test", 1, 100000, 1); // int ret = fieldstat_histogram_record(instance, cube_id, metric_id, cell_id, 1234); auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_histogram_record(instance, cube_id, metric_id, cell_id, 1234); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_histogram(instance, cube_id, "histogram metric", 1, 100000, 1); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_COMPREHENSIVE, true); printf("merge_performance_one_instance_comprehensive_histogram_empty_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 2500); } TEST(test_performance, merge_performance_one_instance_topk_counter_empty_dest) { auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_counter_incrby(instance, cube_id, metric_id, cell_id, rand() % 1000); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_counter(instance, cube_id, "metric name", false); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_TOPK, true); printf("merge_performance_one_instance_topk_counter_empty_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 1000); } TEST(test_performance, merge_performance_one_instance_comprehensive_counter_full_dest) { // int metric_id = fieldstat_register_counter(tmp_i, cube_id, "metric name", false); // fieldstat_counter_incrby(instance, cube_id, metric_id, cell_id, 1); auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_counter_incrby(instance, cube_id, metric_id, cell_id, 1); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_counter(instance, cube_id, "metric name", false); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_COMPREHENSIVE, false); printf("merge_performance_one_instance_comprehensive_counter_full_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 1000); } TEST(test_performance, merge_performance_one_instance_comprehensive_hll_full_dest) { // int metric_id = fieldstat_register_hll(instance, cube_id, "czz_test hll metric", 10); // int ret = fieldstat_hll_add(instance, cube_id, metric_id, cell_id, "hello", 5); auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_hll_add(instance, cube_id, metric_id, cell_id, "hello", 5); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_hll(instance, cube_id, "hll metric", 6); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_COMPREHENSIVE, false); printf("merge_performance_one_instance_comprehensive_hll_full_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 1000); } TEST(test_performance, merge_performance_one_instance_comprehensive_histogram_full_dest) { // int metric_id = fieldstat_register_histogram(instance, cube_id, "czz_test", 1, 600000, 3); // int ret = fieldstat_histogram_record(instance, cube_id, metric_id, cell_id, 1234); auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_histogram_record(instance, cube_id, metric_id, cell_id, 1234); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_histogram(instance, cube_id, "histogram metric", 1, 100000, 1); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_COMPREHENSIVE, false); printf("merge_performance_one_instance_comprehensive_histogram_full_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 2 * 1000); } TEST(test_performance, merge_performance_one_instance_topk_counter_full_dest) { auto metric_add_func = [](struct fieldstat *instance, int cube_id, int metric_id, int cell_id) { fieldstat_counter_incrby(instance, cube_id, metric_id, cell_id, rand() % 1000); }; auto metric_register_func = [](struct fieldstat *instance, int cube_id) { return fieldstat_register_counter(instance, cube_id, "metric name", false); }; clock_t elapsed = perform_merge_test(metric_add_func, metric_register_func, SAMPLING_MODE_TOPK, false); printf("merge_performance_one_instance_topk_counter_full_dest elapsed_secs: %ld\n", elapsed); EXPECT_TRUE(elapsed < 1500); } /* -------------------------------------------------------------------------- */ /* add */ /* -------------------------------------------------------------------------- */ TEST(test_performance, performance_test_add_cells_comprehensive) { size_t cell_count = 100000; struct fieldstat_tag tags[cell_count]; for (size_t i = 0; i < cell_count; i++) { tags[i] = TEST_TAG_INT; tags[i].value_longlong = i; } // getchar(); struct fieldstat *instance = fieldstat_new(); fieldstat_register_cube(instance, &TEST_TAG_INT_collided, 1, SAMPLING_MODE_COMPREHENSIVE, cell_count); fieldstat_register_counter(instance, 0, "test", 0); clock_t start = clock(); for (size_t i = 0; i < cell_count; i++) { fieldstat_cube_add(instance, 0, &tags[i % cell_count], 1, 1); } clock_t end = clock(); double seconds = (double)(end - start) / cell_count; printf("performance_test_add_cells_comprehensive time cost: %f\n", seconds); EXPECT_TRUE(seconds < 1); fieldstat_free(instance); } TEST(test_performance, performance_test_add_cells_topk) { size_t cell_count = 100000; struct fieldstat_tag tags[cell_count]; for (size_t i = 0; i < cell_count; i++) { tags[i] = TEST_TAG_INT; // tags[i].value_longlong = rand() % 10000; if (rand()%2) tags[i].value_longlong = i; else tags[i].value_longlong = rand() % 1000; } struct fieldstat *instance = fieldstat_new(); fieldstat_register_cube(instance, &TEST_TAG_INT_collided, 1, SAMPLING_MODE_TOPK, 1000); fieldstat_register_counter(instance, 0, "test", 0); // getchar(); clock_t start = clock(); for (size_t i = 0; i < cell_count; i++) { fieldstat_cube_add(instance, 0, &tags[i % cell_count], 1, 1); } clock_t end = clock(); double seconds = (double)(end - start) / cell_count; // exit(0); EXPECT_TRUE(seconds < 1); printf("performance_test_on_1000_cells_topk_1000000_times time cost: %f\n", seconds); fieldstat_free(instance); } TEST(test_performance, performance_test_add_cells_histogram_record) { struct fieldstat *instance = fieldstat_new(); fieldstat_register_cube(instance, &TEST_TAG_INT_collided, 1, SAMPLING_MODE_COMPREHENSIVE, 10); fieldstat_register_histogram(instance, 0, "test", 1, 1000000, 3); int cell_id = fieldstat_cube_add(instance, 0, &TEST_TAG_DOUBLE, 1, 1); size_t test_num = 100000; long long vals[test_num]; for (size_t i = 0; i < test_num; i++) { vals[i] = rand() % 1000000 + 1; } clock_t start = clock(); for (size_t i = 0; i < test_num; i++) { fieldstat_histogram_record(instance, 0, 0, cell_id, vals[i]); } clock_t end = clock(); double seconds = (double)(end - start) / test_num; printf("performance_test_add_cells_histogram_record time cost: %f\n", seconds); EXPECT_TRUE(seconds < 1); fieldstat_free(instance); } TEST(test_performance, performance_test_add_cells_hll_add) { struct fieldstat *instance = fieldstat_new(); fieldstat_register_cube(instance, &TEST_TAG_INT_collided, 1, SAMPLING_MODE_COMPREHENSIVE, 10); fieldstat_register_hll(instance, 0, "test", 6); int cell_id = fieldstat_cube_add(instance, 0, &TEST_TAG_DOUBLE, 1, 1); size_t test_num = 100000; std::string vals[test_num]; for (size_t i = 0; i < test_num; i++) { vals[i] = std::to_string(rand() % 1000000 + 1); } clock_t start = clock(); for (size_t i = 0; i < test_num; i++) { fieldstat_hll_add(instance, 0, 0, cell_id, vals[i].c_str(), vals[i].length()); } clock_t end = clock(); double seconds = (double)(end - start) / test_num; printf("performance_test_add_cells_hll_add time cost: %f\n", seconds); EXPECT_TRUE(seconds < 1); fieldstat_free(instance); } /* -------------------------------------------------------------------------- */ /* export */ /* -------------------------------------------------------------------------- */ using namespace std; TEST(test_performance, export_many_cells) { const int MAX_CELL_NUM = 1000; const int TAG_NUM = 3000; const int CUBE_NUM = 10; const int METRIC_NUM = 10; Fieldstat_tag_list_wrapper *tags[TAG_NUM]; for (int i = 0; i < TAG_NUM; i++) { tags[i] = new Fieldstat_tag_list_wrapper("my key", i); } struct fieldstat *instance = fieldstat_new(); int cell_id[MAX_CELL_NUM]; for (int i = 0; i < CUBE_NUM; i++) { Fieldstat_tag_list_wrapper cube_tag("shared key", i); int cube_id = fieldstat_register_cube(instance, cube_tag.get_tag(), cube_tag.get_tag_count(), SAMPLING_MODE_COMPREHENSIVE, MAX_CELL_NUM); for (int k = 0; k < MAX_CELL_NUM; k++) { cell_id[k] = fieldstat_cube_add(instance, cube_id, tags[rand() % TAG_NUM]->get_tag(), 1, 1); } for (int j = 0; j < METRIC_NUM; j++) { string metric_name = "metric name" + to_string(i) + to_string(j); int metric_id = fieldstat_register_counter(instance, cube_id, metric_name.c_str(), false); for (int k = 0; k < MAX_CELL_NUM; k++) { fieldstat_counter_incrby(instance, cube_id, metric_id, cell_id[k], 1); } } } struct fieldstat_json_exporter *fieldstat_json_exporter = fieldstat_json_exporter_new(instance); printf("export_many_cells\n"); // getchar(); clock_t start = clock(); char *json_string = fieldstat_json_exporter_export(fieldstat_json_exporter); clock_t end = clock(); // exit(0); free(json_string); fieldstat_json_exporter_free(fieldstat_json_exporter); printf("export_many_cells us: %ld\n", end - start); fieldstat_free(instance); for (int i = 0; i < TAG_NUM; i++) { delete tags[i]; } } int main(int argc, char *argv[]) { testing::InitGoogleTest(&argc, argv); return RUN_ALL_TESTS(); }